满分5 > 高中数学试题 >

(理科)设椭圆的右焦点为F1,直线与x轴交于点A,若(其中O为坐标原点) (1)...

(理科)设椭圆manfen5.com 满分网的右焦点为F1,直线manfen5.com 满分网与x轴交于点A,若manfen5.com 满分网(其中O为坐标原点)
(1)求椭圆M的方程;
(2)设点P是椭圆M上的任意一点,线段EF为圆N:x2+(y-2)2=1的任意一条直径(E、F为直径的两个端点),求manfen5.com 满分网的最大值.
(1)确定A,F1的坐标,利用建立方程,从而可求椭圆M的方程; (Ⅱ)利用向量的数量积运算,将求的最大值转化为求的最大值,利用配方法可求. 【解析】 (1)由题设知,,F1() ∵,∴ ∴a2=6 ∴椭圆M的方程为; (2)∵圆N:x2+(y-2)2=1的圆心为点N ∴=== 从而将求的最大值转化为求的最大值 P是椭圆M上的任一点,设P(x,y),则有,即x2=6-3y2, 又N(0,2),∴=x2+(y-2)2=-2(y+1)2+12 ∵,∴当y=-1时,取最大值12 ∴的最大值为11.
复制答案
考点分析:
相关试题推荐
(文科)某中学高一年级美术学科开设书法、绘画、雕塑三门校本选修课,学生可选也可不选,学生是否选修哪门课互不影响.已知某学生只选修书法的概率为0.08,只选修书法和绘画的概率是0.12,至少选修一门的概率是0.88.
(1)依题意分别计算该学生选修书法、绘画、雕塑三门校本选修课的概率;
(2)用a表示该学生选修的课程门数和没有选修的课程门数的乘积,记“f(x)=x2+ax为R上的偶函数”为事件A,求事件A发生的概率.
查看答案
已知等差数列{an}的公差d大于0,且a2,a5是方程x2-12x+27=0的两根,数列{bn}的前n项和为Tn,且manfen5.com 满分网
(1)求数列{an}、{bn}的通项公式;
(2)设数列{an}的前n项和为Sn,试比较manfen5.com 满分网的大小,并说明理由.
查看答案
如图,正三棱柱ABC-A1B1C1的所有棱长都相等,D是棱AC的中点,E是棱CC1的中点,AE交A1D于点H.
(1)求证:AE⊥平面A1BD;
(2)求二面角D-BA1-A的大小(用反三角函数表示).

manfen5.com 满分网 查看答案
(文科)已知函数manfen5.com 满分网
(1)求函数f(x)的最大值与单调递增区间;
(2)求使f(x)≥3成立的x的集合.
查看答案
(理科)某中学高一年级美术学科开设书法、绘画、雕塑三门校本选修课,学生可选也可不选,学生是否选修哪门课互不影响.已知某学生只选修书法的概率为0.08,只选修书法和绘画的概率是0.12,至少选修一门的概率是0.88.
(1)依题意分别计算该学生选修书法、绘画、雕塑三门校本选修课的概率;
(2)用ξ表示该学生选修的课程门数和没有选修的课程门数的乘积,求随机变量ξ的分布列和数学期望.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.