满分5 > 高中数学试题 >

数列{an}的前n项和记为Sn,a1=t,an+1=2Sn+1(n∈N*). (...

数列{an}的前n项和记为Sn,a1=t,an+1=2Sn+1(n∈N*).
(1)当t为何值时,数列{an}为等比数列?
(2)在(1)的条件下,若等差数列{bn}的前n项和Tn有最大值,且T3=15,又a1+b1,a2+b2,a3+b3成等比数列,求Tn
(1)先由an+1=2Sn+1求出an+1=3an.再利用数列{an}为等比数列,可得a2=3a1.就可以求出t值. (2)先利用T3=15求出b2=5,,再利用公差把b1和b3表示出来.代入a1+b1,a2+b2,a3+b3成等比数列,求出公差即可求Tn. 【解析】 (1)由an+1=2Sn+1  ①可得an=2sn-1+1  (n≥2)②  两式作差得 an+1-an=2an⇒an+1=3an. 因为数列{an}为等比数列⇒a2=2s1+1=2a1+1=3a1⇒a1=t=1. 所以数列{an}是首项为1,公比为3的等比数列  ∴an=3n-1. (2)设等差数列{bn}的公差为d, 由T3=15⇒b1+b2+b3=15⇒b2=5, 所以可设b1=5-d,b3=5+d. 又a1=1,a2=3,a3=9. 由题得(5-d+1)(5+d+9)=(5+3)2.⇒d=-10,d=2. 因为等差数列{bn}的前n项和Tn有最大值,且b2=5,所以d=-10. 解得b1=15, 所以Tn=15n+=20n-5n2.
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网如图为一简单组合体,其底面 ABCD为正方形,PD⊥平面ABCD,EC∥PD,且PD=AD=2EC=2.
(1)求证:BE∥平面PDA;
(2)求四棱锥B-CEPD的体积.
查看答案
在△ABC中,角A、B、C所对的边分别为a,b,c,已知cos2C=manfen5.com 满分网
(I)求sinC的值;
(Ⅱ)当a=2,2sinA=sinC时,求b及c的长.
查看答案
(坐标系与参数方程选做题)在极坐标系中,曲线ρ=2sinθ与ρcosθ=-1的交点的极坐标为    (0≤θ<2π). 查看答案
如图,AB,CD是半径为a的圆O的两条弦,他们相交于AB的中点P,manfen5.com 满分网,∠OAP=30°,则CP=   
manfen5.com 满分网 查看答案
(陕西卷理15A)不等式|x+3|-|x-2|≥3的解集为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.