满分5 > 高中数学试题 >

设平面向量=(m,1),=(2,n),其中m,n∈{1,2,3,4}. (I)请...

设平面向量manfen5.com 满分网=(m,1),manfen5.com 满分网=(2,n),其中m,n∈{1,2,3,4}.
(I)请列出有序数组(m,n)的所有可能结果;
(II)记“使得mmanfen5.com 满分网⊥(mmanfen5.com 满分网-nmanfen5.com 满分网)成立的(m,n)”为事件A,求事件A发生的概率.
(I)按照第一个数字从小变大的顺序,列举出所有的事件,共有16种结果.(II)根据向量垂直的充要条件,列出关于m,n的关系式.把关系式整理成最简单的形式,根据所给的集合中的元素,列举出所有满足条件的事件,根据古典概型概率公式得到结果. 【解析】 (I)有序数对(m,n)的所有可能结果是: (1,1)(1,2)(1,3)(1,4)(2,1)(2,2)(2,3)(2,4) (3,1)(3,2)(3,3)(3,4)(4,1)(4,2)(4,3)(4,4)共有16个, (II)∵m⊥(m-n), ∴m2-2m+1-n=0, ∴n=(m-1)2 ∵m,n都是集合{1,2,3,4}的元素. ∴事件A包含的基本事件为(2,1)和(3,4),共有2个, 又基本事件数是16, ∴所求的概率是P==
复制答案
考点分析:
相关试题推荐
数列{an}的前n项和记为Sn,a1=t,an+1=2Sn+1(n∈N*).
(1)当t为何值时,数列{an}为等比数列?
(2)在(1)的条件下,若等差数列{bn}的前n项和Tn有最大值,且T3=15,又a1+b1,a2+b2,a3+b3成等比数列,求Tn
查看答案
manfen5.com 满分网如图为一简单组合体,其底面 ABCD为正方形,PD⊥平面ABCD,EC∥PD,且PD=AD=2EC=2.
(1)求证:BE∥平面PDA;
(2)求四棱锥B-CEPD的体积.
查看答案
在△ABC中,角A、B、C所对的边分别为a,b,c,已知cos2C=manfen5.com 满分网
(I)求sinC的值;
(Ⅱ)当a=2,2sinA=sinC时,求b及c的长.
查看答案
(坐标系与参数方程选做题)在极坐标系中,曲线ρ=2sinθ与ρcosθ=-1的交点的极坐标为    (0≤θ<2π). 查看答案
如图,AB,CD是半径为a的圆O的两条弦,他们相交于AB的中点P,manfen5.com 满分网,∠OAP=30°,则CP=   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.