满分5 >
高中数学试题 >
复数z满足|Z-2i|=1.设|z|max=m,|z|min=n,则m•n=( ...
复数z满足|Z-2i|=1.设|z|max=m,|z|min=n,则m•n=( )
A.1
B.2
C.3
D.4
考点分析:
相关试题推荐
设函数f(x)=alnx-bx
2(x>0);
(1)若函数f(x)在x=1处与直线
相切
①求实数a,b的值;
②求函数
上的最大值.
(2)当b=0时,若不等式f(x)≥m+x对所有的
都成立,求实数m的取值范围.
查看答案
已知定点C(-1,0)及椭圆x
2+3y
2=5,过点C的动直线与椭圆相交于A,B两点.
(Ⅰ)若线段AB中点的横坐标是
,求直线AB的方程;
(Ⅱ)在x轴上是否存在点M,使
为常数?若存在,求出点M的坐标;若不存在,请说明理由.
查看答案
设平面向量
=(m,1),
=(2,n),其中m,n∈{1,2,3,4}.
(I)请列出有序数组(m,n)的所有可能结果;
(II)记“使得m
⊥(m
-n
)成立的(m,n)”为事件A,求事件A发生的概率.
查看答案
数列{a
n}的前n项和记为S
n,a
1=t,a
n+1=2S
n+1(n∈N
*).
(1)当t为何值时,数列{a
n}为等比数列?
(2)在(1)的条件下,若等差数列{b
n}的前n项和T
n有最大值,且T
3=15,又a
1+b
1,a
2+b
2,a
3+b
3成等比数列,求T
n.
查看答案
如图为一简单组合体,其底面 ABCD为正方形,PD⊥平面ABCD,EC∥PD,且PD=AD=2EC=2.
(1)求证:BE∥平面PDA;
(2)求四棱锥B-CEPD的体积.
查看答案