满分5 > 高中数学试题 >

如图,在四棱锥P-ABCD中,底面ABCD为矩形,PD⊥底面ABCD,E是AB上...

如图,在四棱锥P-ABCD中,底面ABCD为矩形,PD⊥底面ABCD,E是AB上一点.已知PD=manfen5.com 满分网,CD=4,AD=manfen5.com 满分网
(Ⅰ)若∠ADE=manfen5.com 满分网,求证:CE⊥平面PDE;
(Ⅱ)当点A到平面PDE的距离为manfen5.com 满分网时,求三棱锥A-PDE的侧面积.

manfen5.com 满分网
(Ⅰ)在Rt△DAE中,求出BE=3.在Rt△EBC中,求出∠CEB=.证明CE⊥DE.PD⊥CE.即可证明CE⊥平面PDE. (Ⅱ)证明平面PDE⊥平面ABCD.过A作AF⊥DE于F,求出AF.证明BA⊥平面PAD,BA⊥PA.然后求出三棱锥A-PDE的侧面积S侧=++. (本小题满分12分) 【解析】 (Ⅰ)在Rt△DAE中,AD=,∠ADE=, ∴AE=AD•tan∠ADE=•=1. 又AB=CD=4,∴BE=3. 在Rt△EBC中,BC=AD=,∴tan∠CEB==,∴∠CEB=. 又∠AED=,∴∠DEC=,即CE⊥DE. ∵PD⊥底面ABCD,CE⊂底面ABCD, ∴PD⊥CE. ∴CE⊥平面PDE.…(6分) (Ⅱ)∵PD⊥底面ABCD,PD⊂平面PDE, ∴平面PDE⊥平面ABCD. 如图,过A作AF⊥DE于F,∴AF⊥平面PDE, ∴AF就是点A到平面PDE的距离,即AF=. 在Rt△DAE中,由AD•AE=AF•DE,得 AE=•,解得AE=2. ∴S△APD=PD•AD=××=, S△ADE=AD•AE=××2=, ∵BA⊥AD,BA⊥PD,∴BA⊥平面PAD, ∵PA⊂平面PAD,∴BA⊥PA. 在Rt△PAE中,AE=2,PA===, ∴S△APE=PA•AE=××2=. ∴三棱锥A-PDE的侧面积S侧=++.…(12分)
复制答案
考点分析:
相关试题推荐
某学校餐厅新推出A、B、C、D四款套餐,某一天四款套餐销售情况的条形图如下.为了了解同学对新推出的四款套餐的评价,对每位同学都进行了问卷调查,然后用分层抽样的方法从调查问卷中抽取20份进行统计,统计结果如下面表格所示:
满意一般不满意
A套餐50%25%25%
B套餐80%20%
C套餐50%50%
D套餐40%20%40%
(Ⅰ)若同学甲选择的是A款套餐,求甲的调查问卷被选中的概率;
(Ⅱ)若想从调查问卷被选中且填写不满意的同学中再选出2人进行面谈,求这两人中至少有一人选择的是D款套餐的概率.

manfen5.com 满分网 查看答案
已知f (x)=manfen5.com 满分网sin2x-cos2-manfen5.com 满分网,(x∈R).
(Ⅰ)求函数f(x)的最小值和最小正周期;
(Ⅱ)设△ABC的内角A、B、C的对边分别为a、b、c,且c=manfen5.com 满分网,f (C)=0,若manfen5.com 满分网=(1,sinA)与manfen5.com 满分网=(2,sinB)共线,求a,b的值.
查看答案
对于定义在区间D上的函数f(X),若存在闭区间[a,b]⊊D和常数c,.使得对任意x1∈[a,b],都有f(x1)=c,且对任意x2∈D,当x2∉[a,b]时,f(x2)<c恒成立,则称函数f(X)为区间D上的“平顶型”函数.给出下列说法:
①“平顶型”函数在定义域内有最大值;
②“平顶型”函数在定义域内一定没有最小值;
③函数f(x)=-|x+2|-|x-1|为R上的“平顶型”函数;
④函数f(x)=sinx-|sinx|为R上的“平顶型”函数.
则以上说法中正确的是    .(填上你认为正确结论的序号) 查看答案
表中数阵称为“森德拉姆筛”,其特点是每行每列都是等差数列,则表中数字206共出现    次.

234567
35791113
4710131619
5913172125
61116212631
71319253137
查看答案
已知{an}是公差不为0的等差数列,{bn}是等比数列,其中a1=b1=1,a4=7,a5=b2,且存在常数α,β使得对每一个正整数n都有an=logαbn+β,则α+β=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.