满分5 > 高中数学试题 >

已知函数f(x)=的图象为曲线C,函数g(x)=ax+b的图象为直线l. (1)...

已知函数f(x)=manfen5.com 满分网的图象为曲线C,函数g(x)=manfen5.com 满分网ax+b的图象为直线l.
(1)当a=2,b=-3时,求F(x)=f(x)-g(x)的最大值;
(2)设直线l与曲线C的交点的横坐标分别为x1,x2,且x1≠x2,求证:(x1+x2)g(x1+x2)>2.
(1)由a=2,b=-3,知,x∈(0,1),F'(x)>0,F'(x)单调递增,x∈(1,+∞),F'(x)<0,F'(x)单调递减,由此能求出F(x)=f(x)-g(x)的最大值. (2)设x1<x2,要证(x1+x2)g(x1+x2)>2,只需证,由此入手,能够证明(x1+x2)g(x1+x2)>2. 【解析】 (1)∵, , x∈(0,1),F'(x)>0,F'(x)单调递增, x∈(1,+∞),F'(x)<0,F'(x)单调递减, ∴F(x)max=F(1)=2 (2)不妨设x1<x2,要证(x1+x2)g(x1+x2)>2,只需证, ,, ∵, ∴,即 ,∴, 令,x∈(x1,+∞).只需证, ,令 ,则 ,G(x)在x∈(x1,+∞)单调递增. G(x)>G(x1)=0,∴H′(x)>0,∴H(x)在x∈(x1,+∞)单调递增.H(x)>H(x1)=0, H(x)=(x+x1)ln-2(x-x1)>0,∴(x1+x2)g(x1+x2)>2.
复制答案
考点分析:
相关试题推荐
已知平面上一定点C(-1,0)和一定直线l:x=-4.P为该平面上一动点,作PQ⊥l,垂足为Q,manfen5.com 满分网
(1)问点P在什么曲线上,并求出该曲线方程;
(2)点O是坐标原点,A、B两点在点P的轨迹上,若manfen5.com 满分网,求λ的取值范围.
查看答案
如图,在四棱锥P-ABCD中,底面ABCD为矩形,PD⊥底面ABCD,E是AB上一点.已知PD=manfen5.com 满分网,CD=4,AD=manfen5.com 满分网
(Ⅰ)若∠ADE=manfen5.com 满分网,求证:CE⊥平面PDE;
(Ⅱ)当点A到平面PDE的距离为manfen5.com 满分网时,求三棱锥A-PDE的侧面积.

manfen5.com 满分网 查看答案
某学校餐厅新推出A、B、C、D四款套餐,某一天四款套餐销售情况的条形图如下.为了了解同学对新推出的四款套餐的评价,对每位同学都进行了问卷调查,然后用分层抽样的方法从调查问卷中抽取20份进行统计,统计结果如下面表格所示:
满意一般不满意
A套餐50%25%25%
B套餐80%20%
C套餐50%50%
D套餐40%20%40%
(Ⅰ)若同学甲选择的是A款套餐,求甲的调查问卷被选中的概率;
(Ⅱ)若想从调查问卷被选中且填写不满意的同学中再选出2人进行面谈,求这两人中至少有一人选择的是D款套餐的概率.

manfen5.com 满分网 查看答案
已知f (x)=manfen5.com 满分网sin2x-cos2-manfen5.com 满分网,(x∈R).
(Ⅰ)求函数f(x)的最小值和最小正周期;
(Ⅱ)设△ABC的内角A、B、C的对边分别为a、b、c,且c=manfen5.com 满分网,f (C)=0,若manfen5.com 满分网=(1,sinA)与manfen5.com 满分网=(2,sinB)共线,求a,b的值.
查看答案
对于定义在区间D上的函数f(X),若存在闭区间[a,b]⊊D和常数c,.使得对任意x1∈[a,b],都有f(x1)=c,且对任意x2∈D,当x2∉[a,b]时,f(x2)<c恒成立,则称函数f(X)为区间D上的“平顶型”函数.给出下列说法:
①“平顶型”函数在定义域内有最大值;
②“平顶型”函数在定义域内一定没有最小值;
③函数f(x)=-|x+2|-|x-1|为R上的“平顶型”函数;
④函数f(x)=sinx-|sinx|为R上的“平顶型”函数.
则以上说法中正确的是    .(填上你认为正确结论的序号) 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.