满分5 > 高中数学试题 >

选修4-5:不等式选讲 对于任意实数a(a≠0)和b,不等式|a+b|+|a-2...

选修4-5:不等式选讲
对于任意实数a(a≠0)和b,不等式|a+b|+|a-2b|≥|a|(|x-1|+|x-2|)恒成立,试求实数x的取值范围.
设 ,原式变为|t+1|+|2t-1|≥|x-1|+|x-2|,对任意t恒成立,故|t+1|+|2t-1|的最小值大于或等于 |x-1|+|x-2|,从而求出实数x的取值范围. 【解析】 原式等价于 ≥|x-1|+|x-2|,设 , 则原式变为|t+1|+|2t-1|≥|x-1|+|x-2|,对任意t恒成立. 因为|t+1|+|2t-1|=,最小值在 t= 时取到,为, 所以有 ≥|x-1|+|x-2|=  解得 x∈[,].
复制答案
考点分析:
相关试题推荐
平面直角坐标系中,将曲线manfen5.com 满分网(α为参数)上的每一点纵坐标不变,横坐标变为原来的一半,然后整个图象向右平移1个单位,最后横坐标不变,纵坐标变为原来的2倍得到曲线C1.以坐标原点为极点,x的非负半轴为极轴,建立的极坐标中的曲线C2的方程为ρ=4sinθ,求C1和C2公共弦的长度.
查看答案
manfen5.com 满分网如图,直线AB过圆心O,交圆O于A、B,直线AF交圆O于F(不与B重合),直线L与圆O相切于C,交AB于E,且与AF垂直,垂足为G,连接AC.求证:
(Ⅰ)∠BAC=CAG;
(Ⅱ)AC2=AE•AF.
查看答案
已知函数f(x)=manfen5.com 满分网的图象为曲线C,函数g(x)=manfen5.com 满分网ax+b的图象为直线l.
(1)当a=2,b=-3时,求F(x)=f(x)-g(x)的最大值;
(2)设直线l与曲线C的交点的横坐标分别为x1,x2,且x1≠x2,求证:(x1+x2)g(x1+x2)>2.
查看答案
已知平面上一定点C(-1,0)和一定直线l:x=-4.P为该平面上一动点,作PQ⊥l,垂足为Q,manfen5.com 满分网
(1)问点P在什么曲线上,并求出该曲线方程;
(2)点O是坐标原点,A、B两点在点P的轨迹上,若manfen5.com 满分网,求λ的取值范围.
查看答案
如图,在四棱锥P-ABCD中,底面ABCD为矩形,PD⊥底面ABCD,E是AB上一点.已知PD=manfen5.com 满分网,CD=4,AD=manfen5.com 满分网
(Ⅰ)若∠ADE=manfen5.com 满分网,求证:CE⊥平面PDE;
(Ⅱ)当点A到平面PDE的距离为manfen5.com 满分网时,求三棱锥A-PDE的侧面积.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.