满分5 > 高中数学试题 >

使不等式sin2x+acosx+a2≥1+cosx对一切x∈R恒成立的负数a的取...

使不等式sin2x+acosx+a2≥1+cosx对一切x∈R恒成立的负数a的取值范围是   
利用公式1=cos2x+sin2x,进行代换,可得cos2x+(1-a)cosx-a2≤0,然后利用换元法和二次函数的性质列出性质进行求解. 【解析】 1-cos2x+acosx+a2≥1+cosx⇒cos2x+(1-a)cosx-a2≤0, 令t=cosx, ∵x∈R, ∴t∈[-1,1], t2+(1-a)t-a2≤0, ∴. 故答案为a≤-2.
复制答案
考点分析:
相关试题推荐
若log4(x+2y)+log4(x-2y)=1,则|x|-|y|的最小值是    查看答案
已知f(x)是定义在R上的函数,f(1)=1且对任意x∈R都有:f(x+5)≥f(x)+5与f(x+1)≤f(x)+1成立,若g(x)=f(x)+1-x,则g(2002)=    查看答案
如图,点P1,P2,…,P10分别是四面体顶点或棱的中点.那么,在同一平面上的四点组(P1,Pi,Pj,Pk)(1<i<j<k≤10)有     个.
manfen5.com 满分网 查看答案
将二项式manfen5.com 满分网的展开式按x的降幂排列,若前三项系数成等差数列,则该展开式中x的指数是整数的项共有    个. 查看答案
已知复数Z1,Z2满足|Z1|=2,|Z2|=3,若它们所对应向量的夹角为60°,则manfen5.com 满分网=    查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.