满分5 > 高中数学试题 >

已知抛物线x2=4y的焦点为F,过焦点F且不平行于x轴的动直线l交抛物线于A,B...

manfen5.com 满分网已知抛物线x2=4y的焦点为F,过焦点F且不平行于x轴的动直线l交抛物线于A,B两点,抛物线在A、B两点处的切线交于点M.
(Ⅰ)求证:A,M,B三点的横坐标成等差数列;
(Ⅱ)设直线MF交该抛物线于C,D两点,求四边形ACBD面积的最小值.
(Ⅰ)由已知可设直线AB的方程为y=kx+1(k≠0由消去y,得x2-4kx-4=0由x2=4y,得,所以, 分别求得直线AM的方程,BM的方程联立求解; (Ⅱ)先由(I)得直线MF方程,与抛物线方程联立消去y,又因为kMF•kAB=-1,所以AB⊥CD,分别求得|AB|,|CD|的长度,由面积公式求解. 【解析】 (Ⅰ)由已知,得F(0,1),显然直线AB的斜率存在且不为0, 则可设直线AB的方程为y=kx+1(k≠0),A(x1,y1),B(x2,y2), 由消去y,得x2-4kx-4=0,显然△=16k2+16>0. 所以x1+x2=4k,x1x2=-4.(2分) 由x2=4y,得,所以, 所以,直线AM的斜率为, 所以,直线AM的方程为,又x12=4y1, 所以,直线AM的方程为x1x=2(y+y1)①.(4分) 同理,直线BM的方程为x2x=2(y+y2)②.(5分) ②-①并据x1≠x2得点M的横坐标, 即A,M,B三点的横坐标成等差数列.(7分) (Ⅱ)由①②易得y=-1,所以点M的坐标为(2k,-1)(k≠0). 所以, 则直线MF的方程为,(8分) 设C(x3,y3),D(x4,y4) 由消去y,得,显然, 所以,x3x4=-4.(9分) 又=.(10分) =.(11分) 因为kMF•kAB=-1,所以AB⊥CD, 所以,, 当且仅当k=±1时,四边形ACBD面积的取到最小值32.(13分)
复制答案
考点分析:
相关试题推荐
设f(x)=(x2+ax+a)e-x,x∈R.
(Ⅰ)确定a的值,使f(x)的极小值为0;
( II)证明:当且仅当a=3时,f(x)的极大值为3.
查看答案
manfen5.com 满分网某校有一贫困学生因病需手术治疗,但现在还差手术费1.1万元,团委计划在全校开展爱心募捐活动,为了增加活动的趣味性吸引更多学生参与,特举办“摇奖100%中奖”活动.凡捐款10元者,享受一次摇奖机会,如图是摇奖机的结构示意图,摇奖机的旋转盘是均匀的,扇形区域A,B,C,D,E所对应的圆心角的比值分别为1:2:3:4:5.相应区域分别设立一、二、三、四、五等奖,奖品分别为价值分别为5元、4元、3元、2元、1元的学习用品.摇奖时,转动圆盘片刻,待停止后,固定指针指向哪个区域(边线忽略不计)即可获得相应价值的学习用品(如图指针指向区域C,可获得价值3元的学习用品).
(Ⅰ)预计全校捐款10元者将会达到1500人次,那么除去购买学习用品的款项后,剩余款项是否能帮助该生完成手术治疗?
(Ⅱ)如果学生甲捐款20元,获得了两次摇奖机会,求他获得价值6元的学习用品的概率.
查看答案
用平行于棱锥底面的平面去截棱锥,则截面与底面之间的部分叫棱台.如图,在四棱台ABCD-A1B1C1D1中,下底ABCD是边长为2的正方形,上底A1B1C1D1是边长为1的正方形,侧棱DD1⊥平面ABCD,DD1=2.
(Ⅰ)求证:B1B∥平面D1AC;
(II)求平面B1AD1与平面CAD1夹角的余弦值.

manfen5.com 满分网 查看答案
已知△ABC中,角A、B、C的对边分别为a、b、c,角A不是最大角,manfen5.com 满分网,外接圆的圆心为O,半径为2.
(Ⅰ)求manfen5.com 满分网的值;
(Ⅱ)若manfen5.com 满分网,求△ABC的周长.

manfen5.com 满分网 查看答案
已知数列{an}满足an=an+1+4,a18+a20=12,等比数列{bn}的首项为2,公比为q.
(Ⅰ)若q=3,问b3等于数列{an}中的第几项?
(Ⅱ)数列{an}和{bn}的前n项和分别记为Sn和Tn,Sn的最大值为M,当q=2时,试比较M与T9的大小.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.