满分5 > 高中数学试题 >

设,g(x)=x3-x2-3. (1)当a=2时,求曲线y=f(x)在x=1处的...

manfen5.com 满分网,g(x)=x3-x2-3.
(1)当a=2时,求曲线y=f(x)在x=1处的切线方程;
(2)如果存在x1,x2∈[0,2],使得g(x1)-g(x2)≥M成立,求满足上述条件的最大整数M;
(3)如果对任意的manfen5.com 满分网,都有f(s)≥g(t)成立,求实数a的取值范围.
(1)根据导数的几何意义求出函数f(x)在x=1处的导数,从而求出切线的斜率,最后用直线的斜截式表示即可; (2)存在x1,x2∈[0,2],使得g(x1)-g(x2)≥M成立等价于:[g(x1)-g(x2)]max≥M,先求导数,研究函数的极值点,通过比较与端点的大小从而确定出最大值和最小值,从而求出[g(x1)-g(x2)]max,求出M的范围; (3)当时,恒成立等价于a≥x-x2lnx恒成立,令h(x)=x-x2lnx,利用导数研究h(x)的最大值即可求出参数a的范围. 【解析】 (1)当a=2时,,,f(1)=2,f'(1)=-1, 所以曲线y=f(x)在x=1处的切线方程为y=-x+3;(4分) (2)存在x1,x2∈[0,2],使得g(x1)-g(x2)≥M成立 等价于:[g(x1)-g(x2)]max≥M, 考察g(x)=x3-x2-3,, 由上表可知:, , 所以满足条件的最大整数M=4;(8分) (3)当时,恒成立 等价于a≥x-x2lnx恒成立, 记h(x)=x-x2lnx,h'(x)=1-2xlnx-x,h'(1)=0. 记m(x)=1-2xlnx-x,m'(x)=-3-2lnx, 由于,m'(x)=-3-2lnx<0, 所以m(x)=h'(x)=1-2xlnx-x在上递减, 当时,h'(x)>0,x∈(1,2]时,h'(x)<0, 即函数h(x)=x-x2lnx在区间上递增,在区间(1,2]上递减, 所以h(x)max=h(1)=1,所以a≥1.(14分)
复制答案
考点分析:
相关试题推荐
数列{bn}的首项b1=1,前n项和为Sn,对任意的n∈N*,点(n,Sn),(4,10)都在二次函数y=ax2+bx的图象上,数列{an}满足manfen5.com 满分网=2n
(1)求证:数列{bn}是等差数列,并求数列{an}的通项公式;
(2)令cn=(1-manfen5.com 满分网)-manfen5.com 满分网,Rn=manfen5.com 满分网+manfen5.com 满分网+manfen5.com 满分网+…+manfen5.com 满分网,求对∀n∈N*,m>Rn都成立的最小正整数m.
查看答案
已知椭圆manfen5.com 满分网的左焦点为F,左右顶点分别为A,C上顶点为B,过F,B,C三点作⊙P,其中圆心P的坐标为(m,n).
(1)若FC是⊙P的直径,求椭圆的离心率;
(2)若⊙P的圆心在直线x+y=0上,求椭圆的方程.
查看答案
如图,在六面体ABCDEFG中,平面ABC∥平面DEFG,AD⊥平面DEFG,AB⊥AC,ED⊥DG,EF∥DG,且AC=EF=1,AB=AD=DE=DG=2.
(1)求证:平面BEF⊥平面DEFG;
(2)求证:BF∥平面ACGD;
(3)求三棱锥A-BCF的体积.

manfen5.com 满分网 查看答案
某学校共有教职工900人,分成三个批次进行继续教育培训,在三个批次中男、女教职工人数如左表所示.已知在全体教职工中随机抽取1名,抽到第二批次中女教职工的概率是0.16.
     第一批次第二批次第三批次
女教职工196xy
男教职工204156z
(1)求x的值;
(2)现用分层抽样的方法在全体教职工中抽取54名做培训效果的调查,问应在第三批次中抽取教职工多少名?
(3)已知y≥96,z≥96,求第三批次中女教职工比男教职工多的概率.
查看答案
设函数f(x)=sin2x+manfen5.com 满分网sinxcosx+manfen5.com 满分网
(1)求f(x)的最小正周期T;
(2)已知a,b,c分别是△ABC的内角A,B,C所对的边,a=2manfen5.com 满分网,c=4,A为锐角,且f(A)是函数f(x)在[0,manfen5.com 满分网]上的最大值,求A、b.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.