满分5 >
高中数学试题 >
已知集合A={1,2,3,4},集合 B={2,4},则 A∩B=( ) A.{...
已知集合A={1,2,3,4},集合 B={2,4},则 A∩B=( )
A.{2,4}
B.{1,3}
C.{1,2,3,4}
D.∅
考点分析:
相关试题推荐
(选做题)已知函数f(x)=|2x-1|+2,g(x)=-|x+2|+3.
(Ⅰ)解不等式:g(x)≥-2;
(Ⅱ)当x∈R时,f(x)-g(x)≥m+2恒成立,求实数m的取值范围.
查看答案
在平面直角坐标系xOy中,已知曲线C
1:x
2+y
2=1,以平面直角坐标系xOy的原点O为极点,x轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线l:ρ(2cosθ-sinθ)=6.
(1)将曲线C
1上的所有点的横坐标、纵坐标分别伸长为原来的
、2倍后得到曲线C
2,试写出直线l的直角坐标方程和曲线C
2的参数方程;
(2)在曲线C
2上求一点P,使点P到直线l的距离最大,并求出此最大值.
查看答案
如图,直线AB经过⊙O上的点C,并且OA=OB,CA=CB,⊙O交直线OB于E、D,连接EC、CD.
(1)求证:直线AB是⊙O的切线;
(2)若tan∠CED=
,⊙O的半径为3,求OA的长.
查看答案
设
,g(x)=x
3-x
2-3.
(1)当a=2时,求曲线y=f(x)在x=1处的切线方程;
(2)如果存在x
1,x
2∈[0,2],使得g(x
1)-g(x
2)≥M成立,求满足上述条件的最大整数M;
(3)如果对任意的
,都有f(s)≥g(t)成立,求实数a的取值范围.
查看答案
已知椭圆
的离心率为
,以原点为圆心,椭圆的短半轴为半径的圆与直线
相切.
(Ⅰ)求椭圆的方程;
(Ⅱ)设P(4,0),A,B是椭圆C上关于x轴对称的任意两个不同的点,连接PB交椭圆C于另一点E,证明直线AE与x轴相交于点Q(1,0).
查看答案