设正三棱锥P-ABC中,各侧棱两两夹角为α,PC与面PAB所成角为β,则vS-PQR=S△PQR•h=(PQ•PRsinα)•PS•sinβ,记O到各面的距离为d,利用vS-PQR=vO-PQR+vO-PRS+vO-PQS,可得:PQ•PR•PS•sinβ=d(PQ•PR+PR•PS+PQ•PS),由此可得结论.
【解析】
设正三棱锥P-ABC中,各侧棱两两夹角为α,PC与面PAB所成角为β,
则vS-PQR=S△PQR•h=(PQ•PRsinα)•PS•sinβ.
另一方面,记O到各面的距离为d,则vS-PQR=vO-PQR+vO-PRS+vO-PQS,S△PQR•d=△PRS•d+S△PRS•d+△PQS•d=PQ•PRsinα+PS•PRsinα+PQ•PS•sinα,
故有:PQ•PR•PS•sinβ=d(PQ•PR+PR•PS+PQ•PS),
即=常数.
故选D.