满分5 > 高中数学试题 >

设O是正三棱锥P-ABC的底面△ABC的中心,过O的动平面与PC交于S,与PA、...

设O是正三棱锥P-ABC的底面△ABC的中心,过O的动平面与PC交于S,与PA、PB的延长线分别交于Q、R,则manfen5.com 满分网( )
A.有最大值而无最小值
B.有最小值而无最大值
C.无最大值也无最小值
D.是与平面QRS无关的常数
设正三棱锥P-ABC中,各侧棱两两夹角为α,PC与面PAB所成角为β,则vS-PQR=S△PQR•h=(PQ•PRsinα)•PS•sinβ,记O到各面的距离为d,利用vS-PQR=vO-PQR+vO-PRS+vO-PQS,可得:PQ•PR•PS•sinβ=d(PQ•PR+PR•PS+PQ•PS),由此可得结论. 【解析】 设正三棱锥P-ABC中,各侧棱两两夹角为α,PC与面PAB所成角为β, 则vS-PQR=S△PQR•h=(PQ•PRsinα)•PS•sinβ. 另一方面,记O到各面的距离为d,则vS-PQR=vO-PQR+vO-PRS+vO-PQS,S△PQR•d=△PRS•d+S△PRS•d+△PQS•d=PQ•PRsinα+PS•PRsinα+PQ•PS•sinα, 故有:PQ•PR•PS•sinβ=d(PQ•PR+PR•PS+PQ•PS), 即=常数. 故选D.
复制答案
考点分析:
相关试题推荐
logsin1cos1,logsin1tan1,logcos1sin1,logcos1tan1的大小关系是( )
A.logsin1cos1<logcos1sin1<logsin1tan1<logcos1tan1
B.logcos1sin1<logcos1tan1<logsin1cos1<logsin1tan1
C.logsin1tan1<logcos1tan1<logcos1sin1<logsin1cos1
D.logcos1tan1<logsin1tan1<logsin1cos1<logcos1sin1
查看答案
已知方程|x-2n|=kmanfen5.com 满分网 (n∈N*)在区间(2n-1,2n+1]上有两个不相等的实根,则k的取值范围是( )
A.k>0
B.0<k≤manfen5.com 满分网
C.manfen5.com 满分网<k≤manfen5.com 满分网
D.以上都不是
查看答案
如果甲的身高数或体重数至少有一项比乙大,则称甲不亚于乙,在100个小伙子中,如果某人不亚于其他99人,就称他为棒小伙子,那么,100个小伙子中的棒小伙子最多可能有( )
A.1个
B.2个
C.50个
D.100个
查看答案
设复平面上单位圆内接正20边形的20个顶点所对应的复数依次为Z1,Z2,…,Z20,则复数manfen5.com 满分网…,manfen5.com 满分网所对应的不同的点的个数是( )
A.4
B.5
C.10
D.20
查看答案
设等差数列{an}满足:3a8=5a13,且a1>0,Sn为其前n项之和,则Sn中最大的是( )
A.S21
B.S20
C.S11
D.S10
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.