满分5 > 高中数学试题 >

已知f(x)是定义在[-1,1]上的奇函数,且f (1)=1,若m,n∈[-1,...

已知f(x)是定义在[-1,1]上的奇函数,且f (1)=1,若m,n∈[-1,1],m+n≠0时有manfen5.com 满分网
(1)判断f (x)在[-1,1]上的单调性,并证明你的结论;
(2)解不等式:manfen5.com 满分网
(3)若f (x)≤t2-2at+1对所有x∈[-1,1],a∈[-1,1]恒成立,求实数t的取值范围.
(1)由单调性定义判断和证明; (2)由f(x)是奇函数和(1)的结论知f(x)在上[-1,1]是增函数,再利用定义的逆用求解; (3)先由(1)求得f(x)的最大值,再转化为关于a的不等式恒成立问题求解. 【解析】 (1)任取-1≤x1<x2≤1,则 f(x1)-f(x2)=f(x1)+f(-x2)= ∵-1≤x1<x2≤1,∴x1+(-x2)≠0, 由已知>0,又x1-x2<0, ∴f(x1)-f(x2)<0,即f(x)在[-1,1]上为增函数; (2)∵f(x)在[-1,1]上为增函数, 故有 (3)由(1)可知:f(x)在[-1,1]上是增函数, 且f(1)=1,故对x∈[-l,1],恒有f(x)≤1. 所以要使f(x)≤t2-2at+1,对所有x∈[-1,1],a∈[-1,1]恒成立, 即要t2-2at+1≥1成立,故t2-2at≥0成立. 即g(a)=t2-2at对a∈[-1,1],g(a)≥0恒成立, 只需g(a)在[-1,1]上的最小值大于等于零. 故 解得:t≤-2或t=0或t≥2.
复制答案
考点分析:
相关试题推荐
已知二次函数f(x)=ax2+bx+1(a,b∈R,a>0),设方程f(x)=x的两个实数根为x1和x2
(1)如果x1<2<x2<4,设二次函数f(x)的对称轴为x=x,求证:x>-1;
(2)如果|x1|<2,|x2-x1|=2,求b的取值范围.
查看答案
已知集合P=manfen5.com 满分网,y=log2(ax2-2x+2)的定义域为Q.
(1)若P∩Q≠∅,求实数a的取值范围;
(2)若方程manfen5.com 满分网,求实数a的取值的取值范围.
查看答案
某公司准备推出一个新产品,打算拨出款项3万6千元在本地的电视台做广告,.当地电视台广告部安排该公司的广告在晚上八点前和九点后做广告.晚八点前的广告每秒400元,九点后的广告每秒600元,每次播出的时间在10到60秒之间.
根据市场调查研究表明,受广告影响的人数依赖于广告播出的时间以及年龄层次,受广告影响的人数总是和广告播出的时间成正比例.广告时每秒影响各年龄组的人数(千人)估计如表所示.
manfen5.com 满分网
现在的要求是广告宣传至少要影响1500000个年轻人,2000000个中年人和2000000个老年人.该公司也估计了在第一个月内受广告影响的人中,每10个年轻人中有1人、20个中年人中1人、50个老年人中1人将购买一件新产品<并且假设没有一个人第二次再买>,则若使第一个月的销售额最大,如何来安排广告?
查看答案
解关于x的不等式ax2-(a+1)x+1<0.
查看答案
设a,b为正实数,现有下列命题:
①若a2-b2=1,则a-b<1;
②若manfen5.com 满分网,则a-b<1;
③若manfen5.com 满分网,则|a-b|<1;
④若|a3-b3|=1,则|a-b|<1.
其中的真命题有    .(写出所有真命题的编号) 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.