满分5 > 高中数学试题 >

如图,建立平面直角坐标系xOy,x轴在地平面上,y轴垂直于地平面,单位长度为1千...

manfen5.com 满分网如图,建立平面直角坐标系xOy,x轴在地平面上,y轴垂直于地平面,单位长度为1千米.某炮位于坐标原点.已知炮弹发射后的轨迹在方程y=kx-manfen5.com 满分网(1+k2)x2(k>0)表示的曲线上,其中k与发射方向有关.炮的射程是指炮弹落地点的横坐标.
(1)求炮的最大射程;
(2)设在第一象限有一飞行物(忽略其大小),其飞行高度为3.2千米,试问它的横坐标a不超过多少时,炮弹可以击中它?请说明理由.
(1)求炮的最大射程即求  y=kx-(1+k2)x2(k>0)与x轴的横坐标,求出后应用基本不等式求解. (2)求炮弹击中目标时的横坐标的最大值,由一元二次方程根的判别式求解. 【解析】 (1)在 y=kx-(1+k2)x2(k>0)中,令y=0,得 kx-(1+k2)x2=0.                   由实际意义和题设条件知x>0,k>0. ∴,当且仅当k=1时取等号. ∴炮的最大射程是10千米. (2)∵a>0,∴炮弹可以击中目标等价于存在 k>0,使ka-(1+k2)a2=3.2成立, 即关于 的方程a2k2-20ak+a2+64=0有正根. 由△=400a2-4a2(a2+64)≥0得a≤6. 此时,k=>0(不考虑另一根). ∴当a不超过6千米时,炮弹可以击中目标.
复制答案
考点分析:
相关试题推荐
已知f(x)是定义在[-1,1]上的奇函数,且f (1)=1,若m,n∈[-1,1],m+n≠0时有manfen5.com 满分网
(1)判断f (x)在[-1,1]上的单调性,并证明你的结论;
(2)解不等式:manfen5.com 满分网
(3)若f (x)≤t2-2at+1对所有x∈[-1,1],a∈[-1,1]恒成立,求实数t的取值范围.
查看答案
已知二次函数f(x)=ax2+bx+1(a,b∈R,a>0),设方程f(x)=x的两个实数根为x1和x2
(1)如果x1<2<x2<4,设二次函数f(x)的对称轴为x=x,求证:x>-1;
(2)如果|x1|<2,|x2-x1|=2,求b的取值范围.
查看答案
已知集合P=manfen5.com 满分网,y=log2(ax2-2x+2)的定义域为Q.
(1)若P∩Q≠∅,求实数a的取值范围;
(2)若方程manfen5.com 满分网,求实数a的取值的取值范围.
查看答案
某公司准备推出一个新产品,打算拨出款项3万6千元在本地的电视台做广告,.当地电视台广告部安排该公司的广告在晚上八点前和九点后做广告.晚八点前的广告每秒400元,九点后的广告每秒600元,每次播出的时间在10到60秒之间.
根据市场调查研究表明,受广告影响的人数依赖于广告播出的时间以及年龄层次,受广告影响的人数总是和广告播出的时间成正比例.广告时每秒影响各年龄组的人数(千人)估计如表所示.
manfen5.com 满分网
现在的要求是广告宣传至少要影响1500000个年轻人,2000000个中年人和2000000个老年人.该公司也估计了在第一个月内受广告影响的人中,每10个年轻人中有1人、20个中年人中1人、50个老年人中1人将购买一件新产品<并且假设没有一个人第二次再买>,则若使第一个月的销售额最大,如何来安排广告?
查看答案
解关于x的不等式ax2-(a+1)x+1<0.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.