满分5 > 高中数学试题 >

已知椭圆的离心率为,且经过点. (Ⅰ)求椭圆C的方程; (Ⅱ)过点P(0,2)的...

已知椭圆manfen5.com 满分网的离心率为manfen5.com 满分网,且经过点manfen5.com 满分网
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点P(0,2)的直线交椭圆C于A,B两点,求△AOB(O为原点)面积的最大值.
(Ⅰ)由 ,得 .再由椭圆C经过点,能求出椭圆C的方程. (Ⅱ)设直线方程为y=kx+2.将直线AB的方程与椭圆C的方程联立,消去y得(1+3k2)x2+12kx+9=0.再由根的判别式和韦达定理能够求出三角形面积的最大值. (本小题满分14分) (Ⅰ)【解析】 由 , 得 .   ①…(2分) 由椭圆C经过点,得.    ②…(3分) 联立①②,解得 b=1,.  …(4分)    所以椭圆C的方程是 .  …(5分) (Ⅱ)【解析】 易知直线AB的斜率存在,设其方程为y=kx+2. 将直线AB的方程与椭圆C的方程联立, 消去y得 (1+3k2)x2+12kx+9=0.…(7分) 令△=144k2-36(1+3k2)>0,得k2>1. 设A(x1,y1),B(x2,y2), 则,. …(9分) 所以 .     …(10分) 因为 , 设 k2-1=t(t>0), 则 .   …(13分) 当且仅当,即时等号成立, 此时△AOB面积取得最大值.…(14分)
复制答案
考点分析:
相关试题推荐
如图,在三棱柱ABC-A1B1C1中,侧棱AA1⊥底面ABC,AB⊥BC,D为AC的中点,A1A=AB=2,BC=3.
(1)求证:AB1∥平面BC1D;
(2) 求四棱锥B-AA1C1D的体积.

manfen5.com 满分网 查看答案
某中学在校就餐的高一年级学生有440名,高二年级学生有460名,高三年级学生有500名;为了解学校食堂的服务质量情况,用分层抽样的方法从中抽取70名学生进行抽样调查,把学生对食堂的“服务满意度”与“价格满意度”都分为五个等级:1级(很不满意);2级(不满意);3级(一般);4级(满意);5级(很满意),其统计结果如下表(服务满意度为x,价格满意度为y).

人数             y
x
价格满意度
12345




11122
221341
337884
414641
51231
(1)求高二年级共抽取学生人数;
(2)求“服务满意度”为3时的5个“价格满意度”数据的方差;
(3)为提高食堂服务质量,现从x<3且2≤y<4的所有学生中随机抽取两人征求意见,求至少有一人的“服务满意度”为1的概率.
查看答案
已知函数f(x)=sin(ωy+φ)(ω>0,0≤φ≤π)为偶函数,其图象上相邻的两个最低点间的距离为2π.
(Ⅰ)求f(x)的解析式;
(Ⅱ)若α∈(manfen5.com 满分网),f(α+manfen5.com 满分网)=manfen5.com 满分网,求manfen5.com 满分网的值.
查看答案
已知等差数列{an}中,a1=1,a3=-3.
(I)求数列{an}的通项公式;
(II)若数列{an}的前k项和Sk=-35,求k的值.
查看答案
manfen5.com 满分网(几何证明选讲选做题)如图,PAB、PCD为⊙O的两条割线,若 PA=5,AB=7,CD=11,AC=2,则BD等于    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.