已知椭圆
的离心率为
,且经过点
.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点P(0,2)的直线交椭圆C于A,B两点,求△AOB(O为原点)面积的最大值.
考点分析:
相关试题推荐
如图,在三棱柱ABC-A
1B
1C
1中,侧棱AA
1⊥底面ABC,AB⊥BC,D为AC的中点,A
1A=AB=2,BC=3.
(1)求证:AB
1∥平面BC
1D;
(2) 求四棱锥B-AA
1C
1D的体积.
查看答案
某中学在校就餐的高一年级学生有440名,高二年级学生有460名,高三年级学生有500名;为了解学校食堂的服务质量情况,用分层抽样的方法从中抽取70名学生进行抽样调查,把学生对食堂的“服务满意度”与“价格满意度”都分为五个等级:1级(很不满意);2级(不满意);3级(一般);4级(满意);5级(很满意),其统计结果如下表(服务满意度为x,价格满意度为y).
人数 y x | 价格满意度 |
1 | 2 | 3 | 4 | 5 |
服 务 满 意 度 | 1 | 1 | 1 | 2 | 2 | |
2 | 2 | 1 | 3 | 4 | 1 |
3 | 3 | 7 | 8 | 8 | 4 |
4 | 1 | 4 | 6 | 4 | 1 |
5 | | 1 | 2 | 3 | 1 |
(1)求高二年级共抽取学生人数;
(2)求“服务满意度”为3时的5个“价格满意度”数据的方差;
(3)为提高食堂服务质量,现从x<3且2≤y<4的所有学生中随机抽取两人征求意见,求至少有一人的“服务满意度”为1的概率.
查看答案
已知函数f(x)=sin(ωy+φ)(ω>0,0≤φ≤π)为偶函数,其图象上相邻的两个最低点间的距离为2π.
(Ⅰ)求f(x)的解析式;
(Ⅱ)若α∈(
),f(α+
)=
,求
的值.
查看答案
已知等差数列{a
n}中,a
1=1,a
3=-3.
(I)求数列{a
n}的通项公式;
(II)若数列{a
n}的前k项和S
k=-35,求k的值.
查看答案
(几何证明选讲选做题)如图,PAB、PCD为⊙O的两条割线,若 PA=5,AB=7,CD=11,AC=2,则BD等于
.
查看答案