满分5 > 高中数学试题 >

△ABC中内角A,B,C的对边分别为a,b,c,向量=(2sinB,-),=(c...

△ABC中内角A,B,C的对边分别为a,b,c,向量manfen5.com 满分网=(2sinB,-manfen5.com 满分网),manfen5.com 满分网=(cos2B,2cos2manfen5.com 满分网-1)且manfen5.com 满分网manfen5.com 满分网
(Ⅰ)求锐角B的大小;
(Ⅱ)如果b=2,求△ABC的面积S△ABC的最大值.
(Ⅰ)由两向量的坐标及两向量平行,利用平面向量平行时满足的条件列出关系式,利用二倍角的正弦、余弦函数公式及同角三角函数间的基本关系化简,求出tan2B的值,由B为锐角,得到2B的范围,利用特殊角的三角函数值即可求出B的度数; (Ⅱ)由B的度数求出sinB及cosB的值,进而由b及cosB的值,利用余弦定理列出关系式,再利用基本不等式化简求出ac的最大值,再由ac的最大值及sinB的值,利用三角形的面积公式即可求出三角形ABC面积的最大值. 【解析】 (Ⅰ)∵=(2sinB,-),=(cos2B,2cos2-1)且∥, ∴2sinB(2cos2-1)=-cos2B, ∴2sinBcosB=-cos2B,即sin2B=-cos2B, ∴tan2B=-, 又B为锐角,∴2B∈(0,π), ∴2B=, 则B=;…(6分) (Ⅱ)∵B=,b=2, ∴由余弦定理cosB=得:a2+c2-ac-4=0, 又a2+c2≥2ac,代入上式得:ac≤4(当且仅当a=c=2时等号成立), ∴S△ABC=acsinB=ac≤(当且仅当a=c=2时等号成立), 则S△ABC的最大值为.…(12分)
复制答案
考点分析:
相关试题推荐
已知f(x)是定义在R上的不恒为零的函数,且对于任意实数a、b∈R满足:f=af(b)+bf(a),f(2)=2,an=manfen5.com 满分网(n∈N*),bn=manfen5.com 满分网(n∈N*),考察下列结论:
①f(0)=f(1);
②f(x)为偶函数;
③数列{bn}为等差数列;
④数列{an}为等比数列,
其中正确的是    .(填序号) 查看答案
已知manfen5.com 满分网(m>0,n>0),当mn取得最小值时,直线y=-manfen5.com 满分网x+2与曲线manfen5.com 满分网的交点个数为    查看答案
已知|manfen5.com 满分网|=2|manfen5.com 满分网|≠0,且关于x的函数f(x)=manfen5.com 满分网x3+manfen5.com 满分网|manfen5.com 满分网|x2+manfen5.com 满分网manfen5.com 满分网x在R上有极值,则manfen5.com 满分网manfen5.com 满分网的夹角范围为    查看答案
观察下列等式:
1=1
1+2=3
1+2+3=6
1+2+3+4=10
1+2+3+4+5=15


13=1
13+23=9
13+23+33=36
13+23+33+43=100
13+23+33+43+53=225

可以推测:13+23+33+…+n3=    (n∈N+,用含有n的代数式表示). 查看答案
给出定义:若manfen5.com 满分网(其中m为整数),则m叫做离实数x最近的整数,记作{x}=m.在此基础上给出下列关于函数f(x)=|x-{x}|的四个命题:
①函数y=f(x)的定义域为R,值域为manfen5.com 满分网
②函数y=f(x)的图象关于直线manfen5.com 满分网(k∈Z)对称;
③函数y=f(x)是周期函数,最小正周期为1;
④函数y=f(x)在manfen5.com 满分网上是增函数.
其中正确的命题的序号是( )
A.①
B.②③
C.①②③
D.①④
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.