满分5 > 高中数学试题 >

某高等学校自愿献血的50位学生的血型分布的情况如下表: 血型 A B AB O ...

某高等学校自愿献血的50位学生的血型分布的情况如下表:
血型ABABO
人数2010515
(Ⅰ)从这50位学生中随机选出2人,求这2人血型都为A型的概率;
(Ⅱ)从这50位学生中随机选出2人,求这2人血型相同的概率;
(Ⅲ)现有一位血型为A型的病人需要输血,要从血型为A,O的学生中随机选出2人准备献血,记选出A型血的人数为ξ,求随机变量ξ的分布列及数学期望.
(1)从50位学生中随机选出2人共有C502种结果,这2人血型都为A型有C202种结果,根据古典概型公式得到结果. (2)从50位学生中随机选出2人共有C502种结果,2人血型相同包括两人都是A型,两人都是B型,两人都是AB型,两人都是O型,根据上面所列的方法,写出结果. (3)要从血型为A,O的学生中随机选出2人准备献血,选出A型血的人数为ξ,由题意知,变量取0、1、2,分别做出各变量对应的概率,写出分布列,算出期望. 【解析】 (Ⅰ)记“这2人血型都为A型”为事件A,两个人的血型有C502种结果,这2人血型都为A型有C202种结果,由古典概型公式得,即这2人血型都为A型的概率是. (Ⅱ)记“这2人血型相同”为事件B, 2人血型相同包括两人都是A型, 两人都是B型,两人都是AB型,两人都是O型, ∴满足条件的事件数是C202+C102+C52+C152, ∴, ∴这2人血型相同的概率是. (Ⅲ)随机变量ξ可能取的值为0,1,2. 且, , . 所以ξ的分布列是 ξ的数学期望为Eξ=0×+1×+2×=.
复制答案
考点分析:
相关试题推荐
△ABC中内角A,B,C的对边分别为a,b,c,向量manfen5.com 满分网=(2sinB,-manfen5.com 满分网),manfen5.com 满分网=(cos2B,2cos2manfen5.com 满分网-1)且manfen5.com 满分网manfen5.com 满分网
(Ⅰ)求锐角B的大小;
(Ⅱ)如果b=2,求△ABC的面积S△ABC的最大值.
查看答案
已知f(x)是定义在R上的不恒为零的函数,且对于任意实数a、b∈R满足:f=af(b)+bf(a),f(2)=2,an=manfen5.com 满分网(n∈N*),bn=manfen5.com 满分网(n∈N*),考察下列结论:
①f(0)=f(1);
②f(x)为偶函数;
③数列{bn}为等差数列;
④数列{an}为等比数列,
其中正确的是    .(填序号) 查看答案
已知manfen5.com 满分网(m>0,n>0),当mn取得最小值时,直线y=-manfen5.com 满分网x+2与曲线manfen5.com 满分网的交点个数为    查看答案
已知|manfen5.com 满分网|=2|manfen5.com 满分网|≠0,且关于x的函数f(x)=manfen5.com 满分网x3+manfen5.com 满分网|manfen5.com 满分网|x2+manfen5.com 满分网manfen5.com 满分网x在R上有极值,则manfen5.com 满分网manfen5.com 满分网的夹角范围为    查看答案
观察下列等式:
1=1
1+2=3
1+2+3=6
1+2+3+4=10
1+2+3+4+5=15


13=1
13+23=9
13+23+33=36
13+23+33+43=100
13+23+33+43+53=225

可以推测:13+23+33+…+n3=    (n∈N+,用含有n的代数式表示). 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.