满分5 > 高中数学试题 >

已知函数. (1)若f(x)是单调函数,求a的取值范围; (2)若f(x)有两个...

已知函数manfen5.com 满分网
(1)若f(x)是单调函数,求a的取值范围;
(2)若f(x)有两个极值点x1,x2,证明:f(x1)+f(x2)>3-2ln2.
(1)先由f(x),求出f′(x)=--2ax+1=-.再利用导数判断函数的单调性,由f(x)是单调函数,能求出a的取值范围. (2)由(1)知,当且仅当a∈(0,)时,f(x)有极小值点x1和极大值点x2,且x1+x2=,x1x2=.求得f(x1)+f(x2)=-ln(x1x2)+(x1+x2)+1=ln(2a)++1.令g(a)=ln(2a)++1,a∈(0,],由此能够证明f(x1)+f(x2)>3-2ln2. 【解析】 (Ⅰ)f(x)=-lnx-ax2+x, f′(x)=--2ax+1=-.…(2分) 令△=1-8a. 当a≥时,△≤0,f′(x)≤0,f(x)在(0,+∞)单调递减.…(4分) 当0<a<时,△>0,方程2ax2-x+1=0有两个不相等的正根x1,x2, 不妨设x1<x2, 则当x∈(0,x1)∪(x2,+∞)时,f′(x)<0, 当x∈(x1,x2)时,f′(x)>0, 这时f(x)不是单调函数. 综上,a的取值范围是[,+∞).…(6分) (Ⅱ)由(Ⅰ)知,当且仅当a∈(0,)时,f(x)有极小值点x1和极大值点x2, 且x1+x2=,x1x2=. f(x1)+f(x2)=-lnx1-a+x1-lnx2-a+x2 =-(lnx1+lnx2)-(x1-1)-(x2-1)+(x1+x2) =-ln(x1x2)+(x1+x2)+1=ln(2a)++1.…(9分) 令g(a)=ln(2a)++1,a∈(0,], 则当a∈(0,)时,g′(a)=-=<0,g(a)在(0,)单调递减, 所以g(a)>g()=3-2ln2,即f(x1)+f(x2)>3-2ln2.…(12分)
复制答案
考点分析:
相关试题推荐
已知抛物线C:x2=2py(p>0)的焦点为F,抛物线上一点A的横坐标为x1(x1>0),过点A作抛物线C的切线l1交x轴于点D,交y轴于点Q,交直线l:y=manfen5.com 满分网于点M,当|FD|=2时,∠AFD=60°.
(Ⅰ)求证:△AFQ为等腰三角形,并求抛物线C的方程;
(Ⅱ)若B位于y轴左侧的抛物线C上,过点B作抛物线C的切线l2交直线l1于点P,交直线l于点N,求△PMN面积的最小值,并求取到最小值时的x1值.
查看答案
manfen5.com 满分网将两块三角板按图甲方式拼好(A、B、C、D四点共面),其中∠B=∠D=90°,∠ACD=30°,∠ACB=45°,AC=2,现将三角板ACD沿AC折起,使点D在平面ABC上的射影O恰好在AB上(如图乙).
(1)求证:AD⊥平面BDC;
(2)求二面角D-AC-B的大小;
(3)求异面直线AC与BD所成角的大小.
查看答案
某高等学校自愿献血的50位学生的血型分布的情况如下表:
血型ABABO
人数2010515
(Ⅰ)从这50位学生中随机选出2人,求这2人血型都为A型的概率;
(Ⅱ)从这50位学生中随机选出2人,求这2人血型相同的概率;
(Ⅲ)现有一位血型为A型的病人需要输血,要从血型为A,O的学生中随机选出2人准备献血,记选出A型血的人数为ξ,求随机变量ξ的分布列及数学期望.
查看答案
△ABC中内角A,B,C的对边分别为a,b,c,向量manfen5.com 满分网=(2sinB,-manfen5.com 满分网),manfen5.com 满分网=(cos2B,2cos2manfen5.com 满分网-1)且manfen5.com 满分网manfen5.com 满分网
(Ⅰ)求锐角B的大小;
(Ⅱ)如果b=2,求△ABC的面积S△ABC的最大值.
查看答案
已知f(x)是定义在R上的不恒为零的函数,且对于任意实数a、b∈R满足:f=af(b)+bf(a),f(2)=2,an=manfen5.com 满分网(n∈N*),bn=manfen5.com 满分网(n∈N*),考察下列结论:
①f(0)=f(1);
②f(x)为偶函数;
③数列{bn}为等差数列;
④数列{an}为等比数列,
其中正确的是    .(填序号) 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.