满分5 > 高中数学试题 >

选修4-1:几何证明选讲 如图,已知PA与圆O相切于点A,经过点O的割线PBC交...

选修4-1:几何证明选讲
如图,已知PA与圆O相切于点A,经过点O的割线PBC交圆O于点B,C,∠APC的平分线分别交AB,AC于点D,E.
(Ⅰ)证明:∠ADE=∠AED;
(Ⅱ)若AC=AP,求manfen5.com 满分网的值.

manfen5.com 满分网
(Ⅰ)根据弦切角定理,得到∠BAP=∠C,结合PE平分∠APC,可得∠BAP+∠APD=∠C+∠CPE,最后用三角形的外角可得∠ADE=∠AED; (Ⅱ)根据AC=AP得到∠APC=∠C,结合(I)中的结论可得∠APC=∠C=∠BAP,再在△APC中根据直径BC得到∠PAC=90°+∠BAP,利用三角形内角和定理可得.利用直角三角形中正切的定义,得到,最后通过内角相等证明出△APC∽△BPA,从而. 【解析】 (Ⅰ)∵PA是切线,AB是弦, ∴∠BAP=∠C. 又∵∠APD=∠CPE, ∴∠BAP+∠APD=∠C+∠CPE. ∵∠ADE=∠BAP+∠APD,∠AED=∠C+∠CPE, ∴∠ADE=∠AED.…(5分) (Ⅱ) 由(Ⅰ)知∠BAP=∠C, ∵∠APC=∠BPA, ∵AC=AP, ∴∠APC=∠C ∴∠APC=∠C=∠BAP. 由三角形内角和定理可知,∠APC+∠C+∠CAP=180°. ∵BC是圆O的直径, ∴∠BAC=90°. ∴∠APC+∠C+∠BAP=180°-90°=90°. ∴. 在Rt△ABC中,,即, ∴. ∵在△APC与△BPA中 ∠BAP=∠C,∠APB=∠CPA, ∴△APC∽△BPA. ∴. ∴.   …(10分)
复制答案
考点分析:
相关试题推荐
已知f(x)=x3+bx+cx+d在(-∞,0)上是增函数,在[0,2]上是减函数,且方程f(x)=0有三个根,它们分别为α,2,β.
(1)求c的值;
(2)求证f(1)≥2;
(3)求|α-β|的取值范围.
查看答案
椭圆E的中心在坐标原点O,焦点在x轴上,离心率为manfen5.com 满分网.点P(1,manfen5.com 满分网)、A、B在椭圆E上,且manfen5.com 满分网+manfen5.com 满分网=mmanfen5.com 满分网(m∈R).
(1)求椭圆E的方程及直线AB的斜率;
(2)当m=-3时,证明原点O是△PAB的重心,并求直线AB的方程.
查看答案
manfen5.com 满分网某高校在2010年的自主招生考试中随机抽取了100名学生的笔试成绩,按成绩分组:第一组[160,165),第二组[165,170),第三组[170,175),第四组[175,180),第五组[180,185)得到的频率分布直方图如图所示,
(1)求第三、四、五组的频率;
(2)为了以选拔出最优秀的学生,学校决定在笔试成绩高的第三、四、五组中用分层抽样抽取6名学生进入第二轮面试,求第三、四、五组每组各抽取多少名学生进入第二轮面试.
(3)在(2)的前提下,学校决定在这6名学生中随机抽取2名学生接受甲考官的面试,求第四组至少有一名学生被甲考官面试的概率.
查看答案
如图,已知AB⊥平面ACD,DE∥AB,△ACD是正三角形,AD=DE=2AB,且F是CD的中点.
(Ⅰ)求证AF∥平面BCE;
(Ⅱ)设AB=1,求多面体ABCDE的体积.

manfen5.com 满分网 查看答案
在△ABC中,角A,B,C所对的边分别为a,b,c,已知a=2manfen5.com 满分网,c=manfen5.com 满分网manfen5.com 满分网,则∠C=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.