满分5 > 高中数学试题 >

已知函数f(x)对任意实数x,y恒有f(x+y)=f(x)+f(y)且当x>0,...

已知函数f(x)对任意实数x,y恒有f(x+y)=f(x)+f(y)且当x>0,f(x)<0.又f(1)=-2.
(1)判断函数f(x)的奇偶性;
(2)求函数f(x)在区间[-3,3]上的最大值;
(3)解关于x的不等式f(ax2)-2f(x)<f(ax)+4.
(1)先求f(0)=0,再取y=-x,则f(-x)=-f(x)对任意x∈R恒成立,故可得函数为奇函数; (2)先判断函数在(-∞,+∞)上是减函数,再求f(-3)=-f(3)=6,从而可求函数的最大值; (3)利用函数为奇函数,可整理得f(ax2-2x)<f(ax-2),利用f(x)在(-∞,+∞)上是减函数,可得ax2-2x>ax-2,故问题转化为解不等式. 【解析】 (1)取x=y=0,则f(0+0)=2f(0),∴f(0)=0…1′ 取y=-x,则f(x-x)=f(x)+f(-x)∴f(-x)=-f(x)对任意x∈R恒成立∴f(x)为奇函数.…3′ (2)任取x1,x2∈(-∞,+∞)且x1<x2,则x2-x1>0,∴f(x2)+f(-x1)=f(x2-x1)<0,…4′ ∴f(x2)<-f(-x1), 又f(x)为奇函数∴f(x1)>f(x2) ∴f(x)在(-∞,+∞)上是减函数.∴对任意x∈[-3,3],恒有f(x)≤f(-3)…6′ 而f(3)=f(2+1)=f(2)+f(1)=3f(1)=-2×3=-6, ∴f(-3)=-f(3)=6,∴f(x)在[-3,3]上的最大值为6…8′ (3)∵f(x)为奇函数,∴整理原式得 f(ax2)+f(-2x)<f(ax)+f(-2), 进一步得f(ax2-2x)<f(ax-2), 而f(x)在(-∞,+∞)上是减函数, ∴ax2-2x>ax-2…10′∴(ax-2)(x-1)>0. ∴当a=0时,x∈(-∞,1) 当a=2时,x∈{x|x≠1且x∈R} 当a<0时, 当0<a<2时, 当a>2时,…12′
复制答案
考点分析:
相关试题推荐
已知函数manfen5.com 满分网,其中a,b∈R.
(Ⅰ)若曲线y=f(x)在点P(2,f(2))处的切线方程为y=3x+1,求函数f(x)的解析式;
(Ⅱ)讨论函数f(x)的单调性;
(Ⅲ)若对于任意的manfen5.com 满分网,不等式f(x)≤10在manfen5.com 满分网上恒成立,求b的取值范围.
查看答案
设函数manfen5.com 满分网(a,b为常数),且方程manfen5.com 满分网有两个实根为x1=-1,x2=2,
(1)求y=f(x)的解析式;
(2)证明:曲线y=f(x)的图象是一个中心对称图形,并求其对称中心.
查看答案
已知集合A=manfen5.com 满分网
(1)当m=3时,求A∩(∁RB);
(2)若A∩B={x|-1<x<4},求实数m的值.
查看答案
若函数f(x)=ax-x-a(a>0,且a≠1)有两个零点,则实数a的取值范围是    查看答案
已知f(x)是R上的偶函数,且在(-∞,0)上是减函数,则不等式f(x)≤f(3)的解集是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.