满分5 > 高中数学试题 >

如图,在四棱锥P-ABCD中,侧面PAD是正三角形,且垂直于底面ABCD,底面A...

manfen5.com 满分网如图,在四棱锥P-ABCD中,侧面PAD是正三角形,且垂直于底面ABCD,底面ABCD是边长为2的菱形,∠BAD=60°,M为PC的中点.
(1)求证:PA∥平面BDM;
(2)求直线AC与平面ADM所成角的正弦值.
(1)连接AC,交BD于点O,连接MO,由三角形中位线定理易得MO∥PA,进而由线面平行的判定定理得到PA∥平面BDM; (2)利用等体积法,根据VM-ADC=VC-ADM,我们分别计算出S△ADC,点M到面ADC的距离h1,S△ADM的大小,即可求出C点到平面ADM的距离,进而求出直线AC与平面ADM所成角的正弦值. 【解析】 (1)证明:连接AC,交BD于点O,连接MO 因为MO是△PAC的中位线, 所以MO∥PA 又因为PA⊄面BDM,MO⊂面BDM 所以PA∥平面BDM (2)因为S△ADC=,点M到面ADC的距离h1=,所以VM-ADC==. 因为△PDC为等腰三角形,且M为PC的中点,所以DM⊥PC. 取PB的中点E,AD的中点N,连接ME,PN,NE,BN 因为四边形DMEN为平行四边形 所以DM∥NE 又因为△PNB为等腰三角形,所以NE⊥PB 所以DM⊥PB. 因为DM⊥PC,DM⊥PB且PC∩PB=P 所以DM⊥面PBC. 所以DM⊥BC. 因为BC∥AD 所以AD⊥DM,因为DM= 所以S△ADM== 所以VM-ADC=VC-ADM=S△ADM×h2× 所以h2= 所以sinθ=
复制答案
考点分析:
相关试题推荐
一个暗箱里放着6个黑球、4个白球.
(1)依次取出3个球,不放回,若第1次取出的是白球,求第3次取到黑球的概率;
(2)有放回地依次取出3个球,若第1次取出的是白球,求第3次取到黑球的概率;
(3)有放回地依次取出3个球,求取到白球个数ξ的分布列和期望.
查看答案
在△ABC中,角A,B,C所对的边分别为a,b,c,λc=2acosB(λ∈R).
(I)当λ=1时,求证:A=B;
(II)若B=60°,2b2=3ac,求λ的值.
查看答案
设函数f(x)的定义域为D,若存在非零实数n使得对于任意x∈M(M⊆D),有x+n∈D,且f(x+n)≥f(x),则称f(x)为M上的n高调函数,如果定义域为[-1,+∞)的函数f(x)=x2为[-1,+∞)上的k高调函数,那么实数k的取值范围是    查看答案
已知实数p>0,直线3x-4y+2p=0与抛物线x2=2py和圆manfen5.com 满分网从左到右的交点依次为A、B、C、D,则manfen5.com 满分网的值为    查看答案
下表结出一个“直角三角形数阵”
manfen5.com 满分网
manfen5.com 满分网
manfen5.com 满分网

满足每一列成等差数列,从第三行起,每一行的数成等比数列,且每一行的公比相等,记第i行第j列的数为aij(i≥j,i,j∈N+),则a83等于    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.