已知函数f(x)=lnx-ax
2+(2-a)x.
(I)讨论f(x)的单调性;
(Ⅱ)设a>0,证明:当0<x<
时,f(
+x)>f(
-x);
(Ⅲ)若函数y=f(x)的图象与x轴交于A,B两点,线段AB中点的横坐标为x
,证明:f′(x
)<0.
考点分析:
相关试题推荐
如图,已知椭圆E:
(a>b>0),焦点为F
1、F
2,双曲线G:x
2-y
2=m(m>0)的顶点是该椭圆的焦点,设P是双曲线G上异于顶点的任一点,直线PF
1、PF
2与椭圆的交点分别为A、B和C、D,已知三角形ABF
2的周长等于
,椭圆四个顶点组成的菱形的面积为
.
(1)求椭圆E与双曲线G的方程;
(2)设直线PF
1、PF
2的斜率分别为k
1和k
2,探求k
1和k
2的关系;
(3)是否存在常数λ,使得|AB|+|CD|=λ|AB|•|CD|恒成立?若存在,试求出λ的值;若不存在,请说明理由.
查看答案
如图,在四棱锥P-ABCD中,侧面PAD是正三角形,且垂直于底面ABCD,底面ABCD是边长为2的菱形,∠BAD=60°,M为PC的中点.
(1)求证:PA∥平面BDM;
(2)求直线AC与平面ADM所成角的正弦值.
查看答案
一个暗箱里放着6个黑球、4个白球.
(1)依次取出3个球,不放回,若第1次取出的是白球,求第3次取到黑球的概率;
(2)有放回地依次取出3个球,若第1次取出的是白球,求第3次取到黑球的概率;
(3)有放回地依次取出3个球,求取到白球个数ξ的分布列和期望.
查看答案
在△ABC中,角A,B,C所对的边分别为a,b,c,λc=2acosB(λ∈R).
(I)当λ=1时,求证:A=B;
(II)若B=60°,2b
2=3ac,求λ的值.
查看答案
设函数f(x)的定义域为D,若存在非零实数n使得对于任意x∈M(M⊆D),有x+n∈D,且f(x+n)≥f(x),则称f(x)为M上的n高调函数,如果定义域为[-1,+∞)的函数f(x)=x
2为[-1,+∞)上的k高调函数,那么实数k的取值范围是
.
查看答案