(Ⅰ)利用数列递推式,可得{}是首项为2,公比为2的等比数列,由此可求数列{an}的通项公式;
(Ⅱ)利用两次错位相减法,即可求数列{an}的前n项和Sn.
【解析】
(Ⅰ)∵an+1=2an,∴=2×,
∵a1=2,∴{}是首项为2,公比为2的等比数列,∴
∴数列{an}的通项公式为an=n2×2n;
(Ⅱ)Sn=2×12+22×22+…+n2×2n①
①×2可得2Sn=22×12+23×22+…+n2×2n+1②
①-②可得-Sn=2×1+22×3+…+2n×(2n-1)-n2×2n+1③
③×2可得-2Sn=22×1+23×3+…+2n+1×(2n-1)-n2×2n+2④
③-④,可得Sn=2+22×2+23×2+…+2n×2-2n×(2n-1)-n2×2n+1+n2×2n+2
=2+=2n+1(n2-2n+3)-6
∴Sn═2n+1(n2-2n+3)-6