满分5 > 高中数学试题 >

如图,A、B、C、D四点在同一圆上,AD的延长线与BC的延长线交于E点,且EC=...

manfen5.com 满分网如图,A、B、C、D四点在同一圆上,AD的延长线与BC的延长线交于E点,且EC=ED.
(Ⅰ)证明:CD∥AB;
(Ⅱ)延长CD到F,延长DC到G,使得EF=EG,证明:A、B、G、F四点共圆.
(I)根据两条边相等,得到等腰三角形的两个底角相等,根据四点共圆,得到四边形的一个外角等于不相邻的一个内角,高考等量代换得到两个角相等,根据根据同位角相等两直线平行,得到结论. (II)根据第一问做出的边和角之间的关系,得到两个三角形全等,根据全等三角形的对应角相等,根据平行的性质定理,等量代换,得到四边形的一对对角相等,得到四点共圆. 【解析】 (I)因为EC=ED, 所以∠EDC=∠ECD 因为A,B,C,D四点在同一圆上, 所以∠EDC=∠EBA 故∠ECD=∠EBA, 所以CD∥AB (Ⅱ)由(I)知,AE=BE, 因为EF=EG,故∠EFD=∠EGC 从而∠FED=∠GEC 连接AF,BG,△EFA≌△EGB,故∠FAE=∠GBE 又CD∥AB,∠FAB=∠GBA, 所以∠AFG+∠GBA=180° 故A,B.G,F四点共圆
复制答案
考点分析:
相关试题推荐
函数f(x)=(2-a)(x-1)-2lnx,g(x)=xe1-x(a∈R,e为自然数的底数)
(Ⅰ)讨论函数f(x)的单调性;
(II) 若对任意给定的x∈(0,e],在(0,e]上总存在两个不同的xi(i=1,2),使得f(xi)=g(x)成立,求a的取值范围.
查看答案
设各项均为正数的数列{an}的前n项和为Sn,已知2a2=a1+a3,数列manfen5.com 满分网是公差为d的等差数列.
(Ⅰ)求数列{an}的通项公式(用n,d表示);
(Ⅱ)设c为实数,对满足m+n=3k且m≠n的任意正整数m,n,k,不等式Sm+Sn>cSk都成立.求c的最大值.
查看答案
已知函数f(x)=ex-k-x,(x∈R).
(1)当k=0时,若函数manfen5.com 满分网的定义域是R,求实数m的取值范围;
(2)试判断当k>1时,函数f(x)在(k,2k)内是否存在零点.
查看答案
已知数列{an}满足a1=2,an+1=2manfen5.com 满分网an
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求数列{an}的前n项和Sn
查看答案
已知函数f(x)=2x2-2ax+b,f(-1)=-8.对∀x∈R,都有f(x)≥f(-1)成立;记集合A={x|f(x)>0},B={x||x-t|≤1}.
(I)当t=1时,求(CRA)∪B.
(II)设命题P:A∩B≠空集,若¬P为真命题,求实数t的取值范围.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.