如图,A、B、C、D四点在同一圆上,AD的延长线与BC的延长线交于E点,且EC=ED.
(Ⅰ)证明:CD∥AB;
(Ⅱ)延长CD到F,延长DC到G,使得EF=EG,证明:A、B、G、F四点共圆.
考点分析:
相关试题推荐
函数f(x)=(2-a)(x-1)-2lnx,g(x)=xe
1-x(a∈R,e为自然数的底数)
(Ⅰ)讨论函数f(x)的单调性;
(II) 若对任意给定的x
∈(0,e],在(0,e]上总存在两个不同的x
i(i=1,2),使得f(x
i)=g(x
)成立,求a的取值范围.
查看答案
设各项均为正数的数列{a
n}的前n项和为S
n,已知2a
2=a
1+a
3,数列
是公差为d的等差数列.
(Ⅰ)求数列{a
n}的通项公式(用n,d表示);
(Ⅱ)设c为实数,对满足m+n=3k且m≠n的任意正整数m,n,k,不等式S
m+S
n>cS
k都成立.求c的最大值.
查看答案
已知函数f(x)=e
x-k-x,(x∈R).
(1)当k=0时,若函数
的定义域是R,求实数m的取值范围;
(2)试判断当k>1时,函数f(x)在(k,2k)内是否存在零点.
查看答案
已知数列{a
n}满足a
1=2,a
n+1=2
a
n.
(Ⅰ)求数列{a
n}的通项公式;
(Ⅱ)求数列{a
n}的前n项和S
n.
查看答案
已知函数f(x)=2x
2-2ax+b,f(-1)=-8.对∀x∈R,都有f(x)≥f(-1)成立;记集合A={x|f(x)>0},B={x||x-t|≤1}.
(I)当t=1时,求(C
RA)∪B.
(II)设命题P:A∩B≠空集,若¬P为真命题,求实数t的取值范围.
查看答案