登录
|
注册
返回首页
联系我们
在线留言
满分5
>
高中数学试题
>
如图在三角形ABC中,E为斜边AB的中点,CD⊥AB,AB=1,则的最大值是 ....
如图在三角形ABC中,E为斜边AB的中点,CD⊥AB,AB=1,则
的最大值是
.
设CA=x,CB=y,则x2+y2=1,求出CD,然后根据数量积公式求出,然后利用基本不等式进行求解,即可求出最大值. 【解析】 设CA=x,CB=y,则x2+y2=1 CD= ∴ ∴=x4•y2=x4(1-x2)=2••(1-x2)≤2=. 故答案为:
复制答案
考点分析:
相关试题推荐
若直线2ax-by+2=0(a>0,b>0)被圆x
2
+y
2
+2x-4y+1=0截得的弦长为4,则
+
的最小值是
.
查看答案
设函数f(x)、g(x)在R上可导,且导函数f′(x)>g′(x),则当a<x<b时,下列不等式:
(1)f(x)>g(x);
(2)f(x)<g(x);
(3)f(x)+g(b)<g(x)+f(b);
(4) f(x)+g(a)>g(x)+f(a).
正确的有
.
查看答案
阅读程序:输出的结果是
.
查看答案
已知
=
.
查看答案
设数列{a
n
}的首项a
1
=-7,a
2
=5,且满足a
n+2
=a
n
+2(n∈N
+
),则a
1
+a
3
+a
5
+…+a
18
=
.
查看答案
试题属性
题型:填空题
难度:中等
Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.