满分5 > 高中数学试题 >

已知函数 (1)求证:函数f(x)在点(e,f(e))处的切线横过定点,并求出定...

已知函数manfen5.com 满分网
(1)求证:函数f(x)在点(e,f(e))处的切线横过定点,并求出定点的坐标;
(2)若f(x)<f2(x)在区间(1,+∞)上恒成立,求a的取值范围;
(3)当manfen5.com 满分网时,求证:在区间(1,+∞)上,满足f1(x)<g(x)<f2(x)恒成立的函数g(x)有无穷多个.
(1)先求出导数,根据导数的几何意义得出f(x)在点(e,f(e))处的切线的斜率为,从而写出切线方程得出切线恒过定点; (2)先令<0,对x∈(1,+∞)恒成立, 利用导数求出p(x)在区间(1,+∞)上是减函数,从而得出:要使p(x)<0在此区间上恒成立,只须满足,由此解得a的范围即可. (3)当时,. 记.利用导数研究它的单调性,得出y=f2(x)-f1(x)在(1,+∞)上为增函数,最后得到满足f1(x)<g(x)<f2(x)恒成立的函数g(x)有无穷多个. 【解析】 (1)因为,所以f(x)在点(e,f(e))处的切线的斜率为, 所以f(x)在点(e,f(e))处的切线方程为, 整理得,所以切线恒过定点. (2)令<0,对x∈(1,+∞)恒成立, 因为(*) 令p'(x)=0,得极值点x1=1,, ①当时,有x2>x1=1,即时,在(x2,+∞)上有p'(x)>0, 此时p(x)在区间(x2,+∞)上是增函数,并且在该区间上有p(x)∈(p(x2),+∞),不合题意; ②当a≥1时,有x2<x1=1,同理可知,p(x)在区间(1,+∞)上,有p(x)∈(p(1),+∞),也不合题意; ③当时,有2a-1≤0,此时在区间(1,+∞)上恒有p'(x)<0, 从而p(x)在区间(1,+∞)上是减函数; 要使p(x)<0在此区间上恒成立,只须满足, 所以. 综上可知a的范围是. (3)当时, 记. 因为,所以y=f2(x)-f1(x)在(1,+∞)上为增函数, 所以,设,则f1(x)<R(x)<f2(x), 所以在区间(1,+∞)上,满足f1(x)<g(x)<f2(x)恒成立的函数g(x)有无穷多个.
复制答案
考点分析:
相关试题推荐
已知各项均为正数的等差数列{an}的公差d不等于0,设a1,a3,ak是公比为q的等比数列{bn}的前三项,
(1)若k=7,a1=2;
(i)求数列{anbn}的前n项和Tn
(ii)将数列{an}和{bn}的相同的项去掉,剩下的项依次构成新的数列{cn},设其前n项和为Sn,求manfen5.com 满分网的值
(2)若存在m>k,m∈N*使得a1,a3,ak,am成等比数列,求证k为奇数.
查看答案
manfen5.com 满分网心理学家研究某位学生的学习情况发现:若这位学生刚学完的知识存留量为1,则x 天后的存留量manfen5.com 满分网;若在t(t>0)天时进行第一次复习,则此时这似乎存留量比未复习情况下增加一倍(复习的时间忽略不计),其后存留量y2随时间变化的曲线恰好为直线的一部分,其斜率为manfen5.com 满分网,存留量随时间变化的曲线如图所示.当进行第一次复习后的存留量与不复习的存留量相差最大时,则称此时刻为“二次复习最佳时机点”
(1)若a=-1,t=5,求“二次复习最佳时机点”;
(2)若出现了“二次复习最佳时机点”,求a的取值范围.
查看答案
manfen5.com 满分网如图,已知位于y轴左侧的圆C与y轴相切于点(0,1)且被x轴分成的两段圆弧长之比为1:2,过点H(0,t)的直线l于圆C相交于M、N两点,且以MN为直径的圆恰好经过坐标原点O.
(1)求圆C的方程;
(2)当t=1时,求出直线l的方程;
(3)求直线OM的斜率k的取值范围.
查看答案
manfen5.com 满分网如图,已知四面体ABCD的四个面均为锐角三角形,EFGH分别是边AB,BC,CD,DA上的点,BD||平面EFGH,且EH=FG.
(1)求证:HG||平面ABC
(2)请在平面ABD内过点E做一条线段垂直于AC,并给出证明.
查看答案
manfen5.com 满分网如图,在平面直角坐标系中,点A在x轴正半轴上,直线AB的倾斜角为manfen5.com 满分网
OB=2,设manfen5.com 满分网
(1)用θ表示OA
(2)求manfen5.com 满分网的最小值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.