满分5 > 高中数学试题 >

已知函数f(x)=x2-2mx+2-m. (I)若不等式f(x)≥x-mx在R上...

已知函数f(x)=x2-2mx+2-m.
(I)若不等式f(x)≥x-mx在R上恒成立,求实数m的取值范围;
(II)记A={y|y=f(x),0≤x≤1},且A⊆[0,+∞],求实数m的最大值.
(I)由题意可得 x2-2mx+2-m≥x-mx在R上恒成立,即 x2 -(m+1)x+2-m≥0恒成立,由判别式小于或等于零求得实数m的取值范围. (II)由题意可得x2-2mx+2-m≥0 在[0,1]上恒成立,分m<0、0≤m≤1、m>1三种情况分别求出实数m的取值范围,再去并集,即得所求. 【解析】 (I)由题意可得 x2-2mx+2-m≥x-mx在R上恒成立,即 x2 -(m+1)x+2-m≥0恒成立, ∴△=(m+1)2-4(2-m)≤0,解得-7≤m≤1, 故实数m的取值范围为[-7,1]. (II)由题意可得,A={y|y=f(x),0≤x≤1}={y|y≥0 在[0,1]上恒成立}, 即x2-2mx+2-m≥0 在[0,1]上恒成立. 当m<0时,y=f(x)=x2-2mx+2-m在[0,1]上的最小值为f(0)=2-m≥0,m≤2. 当 0≤m≤1时,y=f(x)=x2-2mx+2-m在[0,1]上的最小值为f(m)=2-m-m2≥0,解得-2≤m≤1, 故此时0≤m≤1. 当m>1时,y=f(x)=x2-2mx+2-m在[0,1]上的最小值为f(1)=-3m+3≥0,m≤1. 故此时m的值不存在. 综上,实数m的取值范围为(-∞,1], 故实数m的最大值为1.
复制答案
考点分析:
相关试题推荐
某社区为丰富居民的业余文化生活,准备召并一次趣味运动会.在“射击气球”这项比赛活动中,制定的比赛规则如下规则:每人只参加一场比赛,每场比赛每人都依次射击完编号为①、②、③、④、⑤的5个气球,每次射击一个气球;若这5次射击中,④、⑤号气球都被击中,且①、②、③号气球至少有1个被击中,则此人获奖;否则不获奖.已知甲每次射击击中气球的概率都为manfen5.com 满分网,且各次击结果互不影响.
(I)求甲在比赛中获奖的概率;
(II)求甲至少击中了其中3个气球但没有获奖的概率.
查看答案
如图1,△ABC是边长为6的等边三角形,manfen5.com 满分网,点G为BC边的中点,线段AG交线段ED于点F.将△AED沿ED翻折,使平面AED丄平面BCDE,连接AB、AC、AG形成如图2的几何体.
(I)求证:BC丄平面AFG
(II)求二面角B-AE-D的大小.

manfen5.com 满分网 查看答案
已知函数manfen5.com 满分网的周期为2π,其中ω>0.
(I)求ω的值及函数f(x)的单调递增区间;
(II)在△ABC中,设内角A、B、C所对边的长分别为a、b,c若a=manfen5.com 满分网,c=2,f(A)=manfen5.com 满分网,求b的值.
查看答案
已知函数f(x)在[a,b]上连续,定义manfen5.com 满分网;其中f(x)min(x∈D)表示f(x)在D上的最小值,f(x)max(x∈D)表示f(x)在D上的最大值.若存在最小正整数k使得f2(x)-f1(x)≤k(x-a)对任意的x∈[a,b]成立,则称函数f(x)为[a,b]上的“k阶收缩函数”.有下列命题:
①若f(x)=cosx,x∈[0,π],则f1(x)=1,x∈[0,π];
②若f(x)=2x,x∈[-1,4],则manfen5.com 满分网
③f(x)=x为[1,2]上的1阶收缩函数;
④f(x)=x2为[1,4]上的5阶收缩函数.
其中你认为正确的所有命题的序号为    查看答案
已知A,B,C,D在同一个球面上,AB⊥平面BCD,BC⊥CD,若AB=6,manfen5.com 满分网,AD=8,则B,C两点间的球面距离是   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.