满分5 > 高中数学试题 >

某汽车生产企业上年度生产一品牌汽车的投入成本为10万元/辆,出厂价为13万元/辆...

某汽车生产企业上年度生产一品牌汽车的投入成本为10万元/辆,出厂价为13万元/辆,年销售量为5000辆.本年度为适应市场需求,计划提高产品档次,适当增加投入成本,若每辆车投入成本增加的比例为x(0<x<1),则出厂价相应提高的比例为0.7x,年销售量也相应增加.已知年利润=(每辆车的出厂价-每辆车的投入成本)×年销售量.
(Ⅰ)若年销售量增加的比例为0.4x,为使本年度的年利润比上年度有所增加,则投入成本增加
的比例x应在什么范围内?
(Ⅱ)年销售量关于x的函数为manfen5.com 满分网,则当x为何值时,本年度的年利润最大?最大利润为多少?
(Ⅰ)根据题意,要使本年度的年利润比上年度有所增加,则投入成本增加的比例x应在什么范围内?首先表示出本年度的年利润,根据原题中已知的年利润=(每辆车的出厂价-每辆车的投入成本)×年销售量可表示出来.然后列出不等式得到x的取值范围. (Ⅱ)根据题意,要使本年度的年利润最大,首先表示出本年度年利润的函数表达式,然后求出此函数的导数为零时x的值,并且考虑导数大于零和小于零时函数的增减性可知此时的x值对应的函数值是函数的最值. 【解析】 (Ⅰ)由题意得:本年度每辆车的投入成本为10×(1+x); 出厂价为13×(1+0.7x);年销售量为5000×(1+0.4x), 因此本年度的利润为 y=[13×(1+0.7x)-10×(1+x)]×5000×(1+0.4x) =(3-0.9x)×5000×(1+0.4x) =-1800x2+1500x+15000(0<x<1), 由-1800x2+1500x+15000>15000得 (Ⅱ)本年度的利润为f(x)=(3-0.9x)×3240×(-x2+2x+)=3240×(0.9x3-4.8x2+4.5x+5) 则f′(x)=3240×(2.7x2-9.6x+4.5)=972(9x-5)(x-3), 由, 当是增函数;当是减函数. ∴当时,万元, 因为f(x)在(0,1)上只有一个极大值,所以它是最大值, 所以当时,本年度的年利润最大,最大利润为20000万元.
复制答案
考点分析:
相关试题推荐
设f(x)=manfen5.com 满分网x3+mx2+nx.
(1)如果g(x)=f′(x)-2x-3在x=-2处取得最小值-5,求f(x)的解析式;
(2)如果m+n<10(m,n∈N+),f(x)在单调递减区间的长度是正整数,试求m和n的值.(注:区间(a,b)的长度为b-a)
查看答案
设f(x)是定义在(-∞,+∞)上的函数,对一切x∈R均有f(x)+f(x+3)=0,且当-1<x≤1时,f(x)=2x-3,求当2<x≤4时,f(x)的解析式.
查看答案
已知函数f(x)=manfen5.com 满分网,给出如下四个命题:
①f(x)在[manfen5.com 满分网,+∞)上是减函数;
②f(x)的最大值是2;
③函数y=f(x)有两个零点;
④f(x)≤manfen5.com 满分网在R上恒成立;
其中正确的命题有    .(把正确的命题序号都填上) 查看答案
f(x)是以2为周期的偶函数,且当x∈[0,1]时,f(x)=x,若在区间[-1,3]内,函数g(x)=f(x)-kx-k有4个零点,则实数k的取值范围是    查看答案
已知f(x+199)=4x2+4x+3(x∈R),那么函数f(x)的最小值为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.