满分5 > 高中数学试题 >

已知定义在正实数集上的函数,g(x)=3a2lnx+b,其中a>0,设两曲线y=...

已知定义在正实数集上的函数manfen5.com 满分网,g(x)=3a2lnx+b,其中a>0,设两曲线y=f(x),y=g(x)有公共点,且在该点处的切线相同.
(I)用a表示b,并求b的最大值;
(II)求证:f(x)≥g(x)(x>0).
(I)欲求出切线方程,只须求出其斜率即可,故先利用导数求出在切点处的导函数值,再结合导数的几何意义即可求出切线的斜率.最后用a表示b,利用导数的工具求b的最大值,从而问题解决. (II)先设F(x)=f(x)-g(x),利用导数研究此函数的单调性,欲证f(x)≥g(x)(x>0),只须证明F(x)在(0,+∞)上的最小值是0即可. 【解析】 (Ⅰ)设y=f(x)与y=g(x)(x>0)在公共点(x,y)处的切线相同, ∵f′(x)=x+2a,, 由题意f(x)=g(x),f′(x)=g′(x), 由得x=a,x=-3a(舍去)即有=(3分) 令,则h′(t)=2t(1-3lnt) 当t(1-3lnt)>0,即时,h'(t)>0; 当t(1-3lnt)<0,即时,h'(t)<0. 故h(t)在为增函数,在为减函数, 于是h(t)在(0,+∞)的最大值为(6分) (Ⅱ)设F(x)=f(x)-g(x)=, 则F'(x)=(10分) 故F(x)在(0,a)为减函数,在(a,+∞)为增函数, 于是函数F(x)在(0,+∞)上的最小值是F(a)=F(x)=f(x)-g(x)=0. 故当x>0时,有f(x)-g(x)≥0,即当x>0时,f(x)≥g(x)(12分)
复制答案
考点分析:
相关试题推荐
某汽车生产企业上年度生产一品牌汽车的投入成本为10万元/辆,出厂价为13万元/辆,年销售量为5000辆.本年度为适应市场需求,计划提高产品档次,适当增加投入成本,若每辆车投入成本增加的比例为x(0<x<1),则出厂价相应提高的比例为0.7x,年销售量也相应增加.已知年利润=(每辆车的出厂价-每辆车的投入成本)×年销售量.
(Ⅰ)若年销售量增加的比例为0.4x,为使本年度的年利润比上年度有所增加,则投入成本增加
的比例x应在什么范围内?
(Ⅱ)年销售量关于x的函数为manfen5.com 满分网,则当x为何值时,本年度的年利润最大?最大利润为多少?
查看答案
设f(x)=manfen5.com 满分网x3+mx2+nx.
(1)如果g(x)=f′(x)-2x-3在x=-2处取得最小值-5,求f(x)的解析式;
(2)如果m+n<10(m,n∈N+),f(x)在单调递减区间的长度是正整数,试求m和n的值.(注:区间(a,b)的长度为b-a)
查看答案
设f(x)是定义在(-∞,+∞)上的函数,对一切x∈R均有f(x)+f(x+3)=0,且当-1<x≤1时,f(x)=2x-3,求当2<x≤4时,f(x)的解析式.
查看答案
已知函数f(x)=manfen5.com 满分网,给出如下四个命题:
①f(x)在[manfen5.com 满分网,+∞)上是减函数;
②f(x)的最大值是2;
③函数y=f(x)有两个零点;
④f(x)≤manfen5.com 满分网在R上恒成立;
其中正确的命题有    .(把正确的命题序号都填上) 查看答案
f(x)是以2为周期的偶函数,且当x∈[0,1]时,f(x)=x,若在区间[-1,3]内,函数g(x)=f(x)-kx-k有4个零点,则实数k的取值范围是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.