满分5 > 高中数学试题 >

已知两点A(-1,0)、B(1,0),点P(x,y)是直角坐标平面上的动点,若将...

已知两点A(-1,0)、B(1,0),点P(x,y)是直角坐标平面上的动点,若将点P的横坐标保持不变、纵坐标扩大到manfen5.com 满分网倍后得到点Q(x,manfen5.com 满分网)满足manfen5.com 满分网
(1)求动点P所在曲线C的轨迹方程;
(2)过点B作斜率为manfen5.com 满分网的直线l交曲线C于M、N两点,且满足manfen5.com 满分网,又点H关于原点O的对称点为点G,试问四点M、G、N、H是否共圆,若共圆,求出圆心坐标和半径;若不共圆,请说明理由.
(1)确定向量AQ,BQ的坐标,利用,即可得到动点P所在曲线C的轨迹方程; (2)假设l的方程与椭圆方程联立,利用向量知识,确定M,N,G,H的坐标,进而确定点到四点的距离相等,从而可得结论. 【解析】 (1)依据题意,有, ∵, ∴x2-1+2y2=1. ∴动点P所在曲线C的轨迹方程是. (2)因直线l过点B,且斜率为k=-,故有l:y=-. 联立方程组,得2x2-2x-1=0. 设两曲线的交点为M(x1,y1)、N(x2,y2), ∴x1+x2=1,y1+y2=. 又,点G与点H关于原点对称, 于是,可得点H(-1,-)、G(1,). 若线段MN、GH的中垂线分别为l1和l2,则有l1:y-=(x-),l2:. 联立方程组,解得l1和l2的交点为O1(,-). 因此,可算得|O1H|==,|O1M|==. 所以,四点M、G、N、H共圆,圆心坐标为O1(,-),半径为.
复制答案
考点分析:
相关试题推荐
如图,四棱锥S-ABCD的底面是正方形,SD⊥平面ABCD,SD=AD=a,点E是SD上的点,且DE=λa(0<λ≤1).
(1)求证:对任意的λ∈(0,1],都有AC⊥BE;
(2)若二面角C-AE-D的大小为60°,求λ的值.

manfen5.com 满分网 查看答案
manfen5.com 满分网PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物.我国PM2.5标准采用世卫组织设定的最宽限值,即PM2.5日均值在35微克/立方米以下空气质量为一级;在35微克/立方米manfen5.com 满分网75微克/立方米之间空气质量为二级;在75微克/立方米以上空气质量为超标.
某试点城市环保局从该市市区2011年全年每天的PM2.5监测数据中随机的抽取15天的数据作为样本,监测值如茎叶图所示(十位为茎,个位为叶)
(I)从这15天的PM2.5日均监测数据中,随机抽出三天,求恰有一天空气质量达到一级的概率;
(II)从这15天的数据中任取三天数据,记ξ表示抽到PM2.5监测数据超标的天数,求ξ的分布列;
(III)以这15天的PM2.5日均值来估计一年的空气质量情况,则一年(按360天计算)中平均有多少天的空气质量达到一级或二级.
查看答案
形状如图所示的三个游戏盘中(图1是正方形,M、N分别是所在边中点,图2是半径分别为2和4的两个同心圆,O为圆心,图3是正六边形,点P为其中心)各有一个玻璃小球,依次摇动三个游戏盘后,将它们水平放置,就完成了一局游戏.manfen5.com 满分网
(I)一局游戏后,这三个盘中的小球都停在阴影部分的概率是多少?
(II)用随机变量ξ表示一局游戏后,小球停在阴影部分的事件数与小球没有停在阴影部分的事件数之差的绝对值,求随机变量ξ的分布列及数学期望.
查看答案
已知各项均不相等的等差数列{an}的前四项和S4=14,且a1,a3,a7成等比数列.
(1)求数列{an}的通项公式;
(2)设Tn为数列{manfen5.com 满分网}的前n项和,若Tn≤λan+1对∀n∈N*恒成立,求实数λ的最小值.
查看答案
已知函数f(x)=manfen5.com 满分网sin2x-cos2x-manfen5.com 满分网,x∈R.
(1)求函数f(x)的最小值和最小正周期;
(2)设△ABC的内角A,B,C的对边分别为a,b,c且c=manfen5.com 满分网,f(C)=0,若sinB=2sinA,求a,b的值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.