满分5 > 高中数学试题 >

已知函数在x=1处取得极值2, (1)求f(x)的解析式; (2)设A是曲线y=...

已知函数manfen5.com 满分网在x=1处取得极值2,
(1)求f(x)的解析式;
(2)设A是曲线y=f(x)上除原点O外的任意一点,过OA的中点且垂直于x轴的直线交曲线于点B,试问:是否存在这样的点A,使得曲线在点B处的切线与OA平行?若存在,求出点A的坐标;若不存在,说明理由;
(3)设函数g(x)=x2-2ax+a,若对于任意x1∈R的,总存在x2∈[-1,1],使得g(x2)≤f(x1),求实数a的取值范围.
(1)先求函数的导数,根据f(x)在x=1处取得极值2列出关于m,n的方程,求出m,n即可求得f(x)的解析式; (2)由(1)得,对于存在性问题,可先假设存在,即假设存在满足条件的点A,再利用曲线在点B处的切线与OA平行,求出点A的坐标,若出现矛盾,则说明假设不成立,即不存在;否则存在. (3)令f'(x)=0,得x=-1或x=1,当x变化时,f'(x),f(x)的变化情况列成表格:下面对a进行了分类讨论:当a≤-1时,当a≥1时,当-1<a<1时,根据题中条件即可得出a的取值范围. 【解析】 (1) (2分) 又f(x)在x=1处取得极值2(4分) (2)由(1)得 假设存在满足条件的点A,且,则(5分), ∴,∴(7分) 所以存在满足条件的点A,此时点A是坐标为或(8分) (3),令f'(x)=0,得x=-1或x=1 当x变化时,f'(x),f(x)的变化情况如下表: x (-∞,-1) -1 (-1,1) 1 (1,+∞) f'(x) - + - f(x) 单调递减 极小值 单调递增 极大值 单调递减 ∴f(x)在x=-1处取得极小值f(-1)=-2,在x=1处取得极大值f(1)=2 又∵x>0时,f(x)>0,∴f(x)的最小值为-2(10分)∵对于任意的x1∈R,总存在x2∈[-1,1],使得g(x2)≤f(x1)∴当x∈[-1,1]时,g(x)最小值不大于-2 又g(x)=x2-2ax+a=(x-a)2+a-a2 当a≤-1时,g(x)的最小值为g(-1)=1+3a,由1+3a≤-2 得a≤-1(11分) 当a≥1时,g(x)最小值为g(1)=1-a,由1-a≤-2,得a≥3 当-1<a<1时,g(x)的最小值为g(a)=a-a2 由a-a2≤-2,得a≤-1或a≥2,又-1<a<1, 所以此时a不存在.(12分) 综上,a的取值范围是(-∞,-1]∪[3,+∞)(13分).
复制答案
考点分析:
相关试题推荐
已知f(x)=xlnx,g(x)=-x2+ax-3.
(1)求函数f(x)在[t,t+2](t>0)上的最小值;
(2)对一切x∈(0,+∞),2f(x)≥g(x)恒成立,求实数a的取值范围;
(3)证明:对一切x∈(0,+∞),都有manfen5.com 满分网成立.
查看答案
本题主要考查抛物线的标准方程、简单的几何性质等基础知识,考查运算求解、推理论证的能力.
如图,在平面直角坐标系xOy,抛物线的顶点在原点,焦点为F(1,0).过抛物线在x轴上方的不同两点A、B,作抛物线的切线AC、BD,与x轴分别交于C、D两点,且AC与BD交于点M,直线AD与直线BC交于点N.
(1)求抛物线的标准方程;
(2)求证:MN⊥x轴;
(3)若直线MN与x轴的交点恰为F(1,0),求证:直线AB过定点.

manfen5.com 满分网 查看答案
已知两点A(-1,0)、B(1,0),点P(x,y)是直角坐标平面上的动点,若将点P的横坐标保持不变、纵坐标扩大到manfen5.com 满分网倍后得到点Q(x,manfen5.com 满分网)满足manfen5.com 满分网
(1)求动点P所在曲线C的轨迹方程;
(2)过点B作斜率为manfen5.com 满分网的直线l交曲线C于M、N两点,且满足manfen5.com 满分网,又点H关于原点O的对称点为点G,试问四点M、G、N、H是否共圆,若共圆,求出圆心坐标和半径;若不共圆,请说明理由.
查看答案
如图,四棱锥S-ABCD的底面是正方形,SD⊥平面ABCD,SD=AD=a,点E是SD上的点,且DE=λa(0<λ≤1).
(1)求证:对任意的λ∈(0,1],都有AC⊥BE;
(2)若二面角C-AE-D的大小为60°,求λ的值.

manfen5.com 满分网 查看答案
manfen5.com 满分网PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物.我国PM2.5标准采用世卫组织设定的最宽限值,即PM2.5日均值在35微克/立方米以下空气质量为一级;在35微克/立方米manfen5.com 满分网75微克/立方米之间空气质量为二级;在75微克/立方米以上空气质量为超标.
某试点城市环保局从该市市区2011年全年每天的PM2.5监测数据中随机的抽取15天的数据作为样本,监测值如茎叶图所示(十位为茎,个位为叶)
(I)从这15天的PM2.5日均监测数据中,随机抽出三天,求恰有一天空气质量达到一级的概率;
(II)从这15天的数据中任取三天数据,记ξ表示抽到PM2.5监测数据超标的天数,求ξ的分布列;
(III)以这15天的PM2.5日均值来估计一年的空气质量情况,则一年(按360天计算)中平均有多少天的空气质量达到一级或二级.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.