满分5 > 高中数学试题 >

如图,⊙O1与⊙O2相交于A、B两点,过点A作⊙O1的切线交⊙O2于点C,过点B...

如图,⊙O1与⊙O2相交于A、B两点,过点A作⊙O1的切线交⊙O2于点C,过点B作两圆的割线,分别交⊙O1、⊙O2于点D、E,DE与AC相交于点P.
(1)求证:AD∥EC;
(2)若AD是⊙O2的切线,且PA=6,PC=2,BD=9,求AD的长.

manfen5.com 满分网
(1)由弦切角定理,得∠BAC=∠D.由同弧所对的圆周角,得∠BAC=∠E,所以∠D=∠E,最后由平行线的判定得AD∥EC; (2)在⊙O1中利用切割线定理,算出PB=3.再在⊙O2中由相交弦定理,得出PE=4,最后在⊙O2利用切割线定理,即可算出 AD的长. 【解析】 (1)连接AB, ∵AC是⊙O1的切线,∴∠BAC=∠D. 又∵∠BAC=∠E, ∴∠D=∠E,可得AD∥EC; (2)∵PA是⊙O1的切线,PD是⊙O2的割线, ∴PA2=PB•PD,即62=PB(PB+9),解之得PB=3. 又∵⊙O2中由相交弦定理,得PA•PC=PB•PE, ∴6×2=3×PE,得PE=4. ∵AD是⊙O2的切线,DE是⊙O2的割线, ∴AD2=DB•DE=9×16=144,解得AD=12.
复制答案
考点分析:
相关试题推荐
已知函数manfen5.com 满分网在x=1处取得极值2,
(1)求f(x)的解析式;
(2)设A是曲线y=f(x)上除原点O外的任意一点,过OA的中点且垂直于x轴的直线交曲线于点B,试问:是否存在这样的点A,使得曲线在点B处的切线与OA平行?若存在,求出点A的坐标;若不存在,说明理由;
(3)设函数g(x)=x2-2ax+a,若对于任意x1∈R的,总存在x2∈[-1,1],使得g(x2)≤f(x1),求实数a的取值范围.
查看答案
已知f(x)=xlnx,g(x)=-x2+ax-3.
(1)求函数f(x)在[t,t+2](t>0)上的最小值;
(2)对一切x∈(0,+∞),2f(x)≥g(x)恒成立,求实数a的取值范围;
(3)证明:对一切x∈(0,+∞),都有manfen5.com 满分网成立.
查看答案
本题主要考查抛物线的标准方程、简单的几何性质等基础知识,考查运算求解、推理论证的能力.
如图,在平面直角坐标系xOy,抛物线的顶点在原点,焦点为F(1,0).过抛物线在x轴上方的不同两点A、B,作抛物线的切线AC、BD,与x轴分别交于C、D两点,且AC与BD交于点M,直线AD与直线BC交于点N.
(1)求抛物线的标准方程;
(2)求证:MN⊥x轴;
(3)若直线MN与x轴的交点恰为F(1,0),求证:直线AB过定点.

manfen5.com 满分网 查看答案
已知两点A(-1,0)、B(1,0),点P(x,y)是直角坐标平面上的动点,若将点P的横坐标保持不变、纵坐标扩大到manfen5.com 满分网倍后得到点Q(x,manfen5.com 满分网)满足manfen5.com 满分网
(1)求动点P所在曲线C的轨迹方程;
(2)过点B作斜率为manfen5.com 满分网的直线l交曲线C于M、N两点,且满足manfen5.com 满分网,又点H关于原点O的对称点为点G,试问四点M、G、N、H是否共圆,若共圆,求出圆心坐标和半径;若不共圆,请说明理由.
查看答案
如图,四棱锥S-ABCD的底面是正方形,SD⊥平面ABCD,SD=AD=a,点E是SD上的点,且DE=λa(0<λ≤1).
(1)求证:对任意的λ∈(0,1],都有AC⊥BE;
(2)若二面角C-AE-D的大小为60°,求λ的值.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.