已知直线l:
(t为参数),曲线C
1:
(θ为参数).
(Ⅰ)设l与C
1相交于A,B两点,求|AB|;
(Ⅱ)若把曲线C
1上各点的横坐标压缩为原来的
倍,纵坐标压缩为原来的
倍,得到曲线C
2,设点P是曲线C
2上的一个动点,求它到直线l的距离的最小值.
考点分析:
相关试题推荐
如图,⊙O
1与⊙O
2相交于A、B两点,过点A作⊙O
1的切线交⊙O
2于点C,过点B作两圆的割线,分别交⊙O
1、⊙O
2于点D、E,DE与AC相交于点P.
(1)求证:AD∥EC;
(2)若AD是⊙O
2的切线,且PA=6,PC=2,BD=9,求AD的长.
查看答案
已知函数
在x=1处取得极值2,
(1)求f(x)的解析式;
(2)设A是曲线y=f(x)上除原点O外的任意一点,过OA的中点且垂直于x轴的直线交曲线于点B,试问:是否存在这样的点A,使得曲线在点B处的切线与OA平行?若存在,求出点A的坐标;若不存在,说明理由;
(3)设函数g(x)=x
2-2ax+a,若对于任意x
1∈R的,总存在x
2∈[-1,1],使得g(x
2)≤f(x
1),求实数a的取值范围.
查看答案
已知f(x)=xlnx,g(x)=-x
2+ax-3.
(1)求函数f(x)在[t,t+2](t>0)上的最小值;
(2)对一切x∈(0,+∞),2f(x)≥g(x)恒成立,求实数a的取值范围;
(3)证明:对一切x∈(0,+∞),都有
成立.
查看答案
本题主要考查抛物线的标准方程、简单的几何性质等基础知识,考查运算求解、推理论证的能力.
如图,在平面直角坐标系xOy,抛物线的顶点在原点,焦点为F(1,0).过抛物线在x轴上方的不同两点A、B,作抛物线的切线AC、BD,与x轴分别交于C、D两点,且AC与BD交于点M,直线AD与直线BC交于点N.
(1)求抛物线的标准方程;
(2)求证:MN⊥x轴;
(3)若直线MN与x轴的交点恰为F(1,0),求证:直线AB过定点.
查看答案
已知两点A(-1,0)、B(1,0),点P(x,y)是直角坐标平面上的动点,若将点P的横坐标保持不变、纵坐标扩大到
倍后得到点Q(x,
)满足
.
(1)求动点P所在曲线C的轨迹方程;
(2)过点B作斜率为
的直线l交曲线C于M、N两点,且满足
,又点H关于原点O的对称点为点G,试问四点M、G、N、H是否共圆,若共圆,求出圆心坐标和半径;若不共圆,请说明理由.
查看答案