满分5 > 高中数学试题 >

设椭圆的右焦点为F1,直线与x轴交于点A,若(其中O为坐标原点). (1)求椭圆...

设椭圆manfen5.com 满分网manfen5.com 满分网的右焦点为F1,直线manfen5.com 满分网与x轴交于点A,若manfen5.com 满分网(其中O为坐标原点).
(1)求椭圆M的方程;
(2)设P是椭圆M上的任意一点,EF为圆N:x2+(y-2)2=1的任意一条直径(E、F为直径的两个端点),求manfen5.com 满分网的最大值.
(1)先求出点A,F1的坐标,利用,即可求得椭圆的方程; (2)方法1:设圆N:x2+(y-2)2=1的圆心为N,则==,从而求的最大值转化为求的最大值; 方法2:设点E(x1,y1),F(x2,y2),P(x,y),根据E,F的中点坐标为(0,2),可得  所以=.根据点E在圆N上,点P在椭圆M上,可得==,利用,可求的最大值; 方法3:①若直线EF的斜率存在,设EF的方程为y=kx+2,由,解得,再分别求得、,利用,可求的最大值;②若直线EF的斜率不存在,此时EF的方程为x=0,同理可求 的最大值. 【解析】 (1)由题设知,,,…(1分) 由,得.…(3分) 解得a2=6. 所以椭圆M的方程为.…(4分) (2)方法1:设圆N:x2+(y-2)2=1的圆心为N, 则 …(6分) =…(7分) =.…(8分) 从而求的最大值转化为求的最大值.…(9分) 因为P是椭圆M上的任意一点,设P(x,y),…(10分) 所以,即.…(11分) 因为点N(0,2),所以.…(12分) 因为,所以当y=-1时,取得最大值12,…(13分) 所以的最大值为11,…(14分) 方法2:设点E(x1,y1),F(x2,y2),P(x,y), 因为E,F的中点坐标为(0,2),所以 …(6分) 所以…(7分)=(x1-x)(-x1-x)+(y1-y)(4-y1-y)==.…(9分) 因为点E在圆N上,所以,即.…(10分) 因为点P在椭圆M上,所以,即.…(11分) 所以==.…(12分) 因为,所以当y=-1时,.…(14分) 方法3:①若直线EF的斜率存在,设EF的方程为y=kx+2,…(6分) 由,解得.…(7分) 因为P是椭圆M上的任一点,设点P(x,y), 所以,即.…(8分) 所以,…(9分) 所以.…(10分) 因为,所以当y=-1时,取得最大值11,…(11分) ②若直线EF的斜率不存在,此时EF的方程为x=0, 由,解得y=1或y=3. 不妨设,E(0,3),F(0,1).…(12分) 因为P是椭圆M上的任一点,设点P(x,y), 所以,即. 所以,. 所以. 因为,所以当y=-1时,取得最大值11,…(13分) 综上可知,的最大值为11,…(14分)
复制答案
考点分析:
相关试题推荐
已知长方形ABCD的AB=3,AD=4.AC∩BD=O.将长方形ABCD沿对角线BD折起,使AC=a,得到三棱锥A-BCD,如图所示.过A作BD的垂线交BD于E.
manfen5.com 满分网
(1)问a为何值时,AE⊥CD;
(2)当二面角A-BD-C的大小为90°时,求二面角A-BC-D的正切值.
查看答案
已知数列{an}中,a1=1,a2=3,且an+1=an+2an-1(n≥2).
(1)设bn=an+1+λan,是否存在实数λ,使数列{bn}为等比数列.若存在,求出λ的值,若不存在,请说明理由;
(2)求数列{an}的前n项和Sn
查看答案
在△ABC中,角A,B,C所对的边分别为a,b,c,且满足ccosB+bcosC-3acosA=0.
(Ⅰ) 求cosA的值;     
(Ⅱ) 若△ABC的面积是manfen5.com 满分网,求manfen5.com 满分网的值.
查看答案
若实数x,y满足x2+y2=4,则manfen5.com 满分网的最小值是    查看答案
在△ABC中,∠BAC=120°,AB=4,AC=2,D是BC上的一点,DC=2BD,则manfen5.com 满分网=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.