要求方程f2(x)=x的根的个数,只要确定f1(x)=f(x),f2(x)=f(f1(x))的解析式,因此需要讨论;(1)(2)(3)(4),分别求出对应解析式,建立方程求解即可
解;(1 )当即时,时,f1(x)=f(x)=2x,f2(x)=f(f1(x))=f(2x)=4x,
由4x=x可得,x=0
(2)当即时,f1(x)=f(x)=2x,f2(x)=f(f1(x))=f(2x)=2-4x,
由2-4x=x可得,x=
(3)当即时,f1(x)=2-2x,f2(x)=f(f1(x))=f(2-2x)=2-2(2-2x)=4x-2
由4x-2=x可得,x=
(4)即,f1(x)=2-2x,f2(x)=f(f1(x))=f(2-2x)=2(2-2x)=4-4x
由4-4x=x可得x=
综上可得,x=0,,,
故选C