(1)、根据题中已知条件结合等差数列的性质便可求出关于q的一元二次方程,解方程便可得出符合条件q的值,进而求得数列{an}的通项公式;
(2)、先求出Sn,找出所需证明的不等式的关系,然后分别讨论当n=5和n>5两种情况下不等式恒成立即可.
【解析】
(1)由已知得a2-a3=2(a3-a4).
从而得2q2-3q+1=0
解得(舍去)…(4分)
所以an=a1•qn-1=•()n-1=.
∴数列{an}的通项公式为;…(6分)
(2)由于.
因此所证不等式等价于:2n>n(n+1)(n≥5.)
①当n=5时,因为左边=32,右边=30,32>30,所以不等式成立;
②假设n=k(k≥5)时不等式成立,即2k>k(k+1),
两边同乘以2得2k+1>(k+1)(k+2).
这说明当n=k+1时也不等式成立.
由①②知,当n≥5时,2n>n(n+1)成立.
因此,当n≥5时,anSn<1成立.…(12分)