满分5 > 高中数学试题 >

设函数f(x)=x2-mlnx,h(x)=x2-x+a. (1)当a=0时,f(...

设函数f(x)=x2-mlnx,h(x)=x2-x+a.
(1)当a=0时,f(x)≥h(x)在(1,+∞)上恒成立,求实数m的取值范围;
(2)当m=2时,若函数k(x)=f(x)-h(x)在[1,3]上恰有两个不同零点,求实数a的取值范围;
(3)是否存在实数m,使函数f(x)和函数h(x)在公共定义域上具有相同的单调性?若存在,求出m的值,若不存在,说明理由.
(1)当a=0时,f(x)≥h(x)在(1,+∞)上恒成立,即:x2-mlnx≥x2-x,转化为即:m≤在(1,+∞)上恒成立,从而得出实数m的取值范围. (2)当m=2时,若函数k(x)=f(x)-h(x)在[1,3]上恰有两个不同零点,即:k(x)=x-2lnx-a,设y1=x-2lnx,y2=a,分别画出它们的图象,由图得实数a的取值范围. (3)先假设存在实数m,使函数f(x)和函数h(x)在公共定义域上具有相同的单调性,由图可知,只须函数f(x)=x2-mlnx在x=处取得极小值即可. 【解析】 (1)当a=0时,f(x)≥h(x)在(1,+∞)上恒成立, 即:x2-mlnx≥x2-x, mlnx≤x,即:m≤在(1,+∞)上恒成立, 因为在(1,+∞)上的最小值为:e, ∴m≤e. 实数m的取值范围:m≤e (2)当m=2时,若函数k(x)=f(x)-h(x)在[1,3]上恰有两个不同零点, 即:k(x)=x-2lnx-a, 设y1=x-2lnx,y2=a,分别画出它们的图象, 由图得: 实数a的取值范围(2-2ln2,3-2ln3]; (3)假设存在实数m,使函数f(x)和函数h(x)在公共定义域上具有相同的单调性, 由图可知,只须函数f(x)=x2-mlnx在x=处取得极小值即可. ∵f(x)=x2-mlnx ∴f′(x)=2x-m×,将x=代入得: 1-2m=0, ∴m= 故存在实数m=,使函数f(x)和函数h(x)在公共定义域上具有相同的单调性.
复制答案
考点分析:
相关试题推荐
已知椭圆C:manfen5.com 满分网+manfen5.com 满分网=1(a>b>0)的一个顶点为A (2,0),离心率为manfen5.com 满分网,直线y=k(x-1)与椭圆C交于不同的两点M,N
(Ⅰ)求椭圆C的方程
(Ⅱ)当△AMN的面积为manfen5.com 满分网时,求k的值.
查看答案
manfen5.com 满分网如图,长方体ABCD-A1B1C1D1 中,底面A1B1C1D1 是正方形,O是BD的中点,E是棱AA1上任意一点.
(Ⅰ)证明:BD⊥EC1
(Ⅱ)如果AB=2,AE=manfen5.com 满分网,OE⊥EC1,求AA1 的长.
查看答案
已知等比数列{an}中,a2,a3,a4分别是某等差数列的第5项、第3项、第2项,且manfen5.com 满分网公比q≠1.
(1)求数列{an}的通项公式;
(2)已知数列{bn}满足bn=manfen5.com 满分网,Sn是数列{bn}的前n项和,求证:当n≥5时,anSn<1.
查看答案
已知向量manfen5.com 满分网=(2,-1),manfen5.com 满分网=(sinmanfen5.com 满分网,cos(B+C)),A、B、C为△ABC的内角的内角,其所对的边分别为a,b,c
(1)当manfen5.com 满分网manfen5.com 满分网取得最大值时,求角A的大小;
(2)在(1)的条件下,当a=manfen5.com 满分网时,求b2+c2的取值范围.
查看答案
已知焦点在x轴上的双曲线的渐近线过椭圆manfen5.com 满分网和椭圆manfen5.com 满分网(a≤1)的交点,则双曲线的离心率的取值范围是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.