由a≠0,f(1-a)=f(1+a),要求f(1-a),与f(1+a),需要判断1-a与1+a与1的大小,从而需要讨论a与0的大小,代入可求
【解析】
∵a≠0,f(1-a)=f(1+a)
当a>0时,1-a<1<1+a,则f(1-a)=2(1-a)+a=2-a,f(1+a)=-(1+a)-2a=-1-3a
∴2-a=-1-3a,即a=-(舍)
当a<0时,1+a<1<1-a,则f(1-a)=-(1-a)-2a=-1-a,f(1+a)=2(1+a)+a=2+3a
∴-1-a=2+3a即
综上可得a=-
故选A