满分5 > 高中数学试题 >

抛物线的焦点坐标是 .

抛物线manfen5.com 满分网的焦点坐标是   
由抛物线的性质即可求得y=-x2的焦点坐标. 【解析】 ∵y=-x2, ∴x2=-2y, ∴其焦点坐标为:(0,-), 故答案为:(0,-).
复制答案
考点分析:
相关试题推荐
不等式manfen5.com 满分网的解集是    查看答案
已知函数f(x)=ln(2ax+1)+manfen5.com 满分网-x2-2ax(a∈R).
(1)若x=2为f(x)的极值点,求实数a的值;
(2)若y=f(x)在[3,+∞)上为增函数,求实数a的取值范围;
(3)当a=-manfen5.com 满分网时,方程f(1-x)=manfen5.com 满分网有实根,求实数b的最大值.
查看答案
设椭圆manfen5.com 满分网(a>b>0)的焦点分别为F1(-1,0)、F2(1,0),直线l:x=a2交x轴于点A,且manfen5.com 满分网
(1)试求椭圆的方程;
(2)过F1、F2分别作互相垂直的两直线与椭圆分别交于D、E、M、N四点(如图所示),试求四边形DMEN面积的最大值和最小值.

manfen5.com 满分网 查看答案
如图,在三棱锥P-ABC中,manfen5.com 满分网
(1)求证:平面ABC⊥平面APC
(2)求直线PA与平面PBC所成角的正弦值;
(3)若动点M在底面三角形ABC上,二面角M-PA-C的余弦值为manfen5.com 满分网,求BM的最小值.

manfen5.com 满分网 查看答案
已知数列{an}满足an+1=2an+n+1(n=1,2,3,…).
(1)若{an}是等差数列,求其首项a1和公差d;
(2)证明{an}不可能是等比数列;
(3)若a1=-1,是否存在实数k和b使得数列{ an+kn+b}是等比数列,如存在,求出{an}的前n项和,若不存在,说明理由.
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.