满分5 > 高中数学试题 >

如图,在四棱锥A-BCDE中,底面BCDE是直角梯形,∠BED=90°,BE∥C...

如图,在四棱锥A-BCDE中,底面BCDE是直角梯形,∠BED=90°,BE∥CD,AB=6,BC=5,manfen5.com 满分网,侧面ABE⊥底面BCDE,∠BAE=90°.
(1)求证:平面ADE⊥平面ABE;
(2)过点D作面α∥平面ABC,分别于BE,AE交于点F,G,求△DFG的面积.

manfen5.com 满分网
(1)欲证平面ADE⊥平面ABE,根据面面垂直的判定定理可知在平面ABE内一直线与平面ADE垂直,根据面面垂直的性质可知DE⊥平面ABE,则AB⊥DE,而AB⊥AE,根据线面垂直的判定定理可知AB⊥平面ADE,满足面面垂直的判定定理所需条件; (2)根据先证四边形BCDF为平行四边形,求出DF,根据比例关系求出FG,由(1)易证:FG⊥平面ADE,则FG⊥DG,从而求出DG,最后利用直角三角形的面积公式求出所求即可. 证明:(1)因为侧面ABE⊥底面BCDE, 侧面ABE∩底面BCDE=BE, DE⊂底面BCDE, DE⊥BE, 所以DE⊥平面ABE, 所以AB⊥DE, 又因为AB⊥AE, 所以AB⊥平面ADE, 所以平面ADE⊥平面ABE;7 (2)因为平面α∥平面ABC, 所以DF∥BC,同理FG∥AB9 所以四边形BCDF为平行四边形. 所以DF=BC=5,CD=BF, 因为,所以 所以11 由(1)易证:FG⊥平面ADE, 所以FG⊥DG, 所以DG=3 所以△DFG的面积S=6.14
复制答案
考点分析:
相关试题推荐
如图,已知四棱锥P-ABCD,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,点E、G分别是CD、PC的中点,点F在PD上,且PF:FD=2:1.
(Ⅰ)证明:EA⊥PB;
(Ⅱ)证明:BG∥面AFC.

manfen5.com 满分网 查看答案
manfen5.com 满分网如图,在四棱锥P-ABCD中,底面ABCD中为菱形,∠BAD=60°,Q为AD的中点.
(1)若PA=PD,求证:平面PQB⊥平面PAD;
(2)点M在线段PC上,PM=tPC,试确定实数t的值,使得PA∥平面MQB.
查看答案
在四棱锥P-ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,E为PD的中点,PA=2AB=2.
(1)求证:PC⊥AE;
(2)求证:CE∥平面PAB;
(3)求三棱锥P-ACE的体积V.

manfen5.com 满分网 查看答案
将圆面(x+1)2+(y-1)2≤3绕直线y=1旋转一周所形成的几何体的体积与该几何体的内接正方体的体积的比值是    查看答案
在三棱锥P-ABC中,已知PC⊥平面ABC、AB⊥平面PBC,且PC=3、BC=manfen5.com 满分网、AB=1,则三棱锥P-ABC的外接球半径为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.