满分5 > 高中数学试题 >

平面向量、的夹角为60°,=(2,0),||=1,则|+|=( ) A. B. ...

平面向量manfen5.com 满分网manfen5.com 满分网的夹角为60°,manfen5.com 满分网=(2,0),|manfen5.com 满分网|=1,则|manfen5.com 满分网+manfen5.com 满分网|=( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.3
D.7
根据题意,由的坐标,可得||,进而可得•的值,利用公式|+|2=2+2•+2,计算出|+|2,开方可得答案. 【解析】 根据题意,=(2,0),则||=2, 又由||=1且、夹角为60°,则•=2×1×cos60°=1, |+|2=2+2•+2=4+2+1=7; 则|+|=; 故选B.
复制答案
考点分析:
相关试题推荐
若向量manfen5.com 满分网,向量manfen5.com 满分网,则manfen5.com 满分网=( )
A.(-2,-4)
B.(3,4)
C.(6,10)
D.(-6,-10)
查看答案
如图,在四棱锥A-BCDE中,底面BCDE是直角梯形,∠BED=90°,BE∥CD,AB=6,BC=5,manfen5.com 满分网,侧面ABE⊥底面BCDE,∠BAE=90°.
(1)求证:平面ADE⊥平面ABE;
(2)过点D作面α∥平面ABC,分别于BE,AE交于点F,G,求△DFG的面积.

manfen5.com 满分网 查看答案
如图,已知四棱锥P-ABCD,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,点E、G分别是CD、PC的中点,点F在PD上,且PF:FD=2:1.
(Ⅰ)证明:EA⊥PB;
(Ⅱ)证明:BG∥面AFC.

manfen5.com 满分网 查看答案
manfen5.com 满分网如图,在四棱锥P-ABCD中,底面ABCD中为菱形,∠BAD=60°,Q为AD的中点.
(1)若PA=PD,求证:平面PQB⊥平面PAD;
(2)点M在线段PC上,PM=tPC,试确定实数t的值,使得PA∥平面MQB.
查看答案
在四棱锥P-ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,E为PD的中点,PA=2AB=2.
(1)求证:PC⊥AE;
(2)求证:CE∥平面PAB;
(3)求三棱锥P-ACE的体积V.

manfen5.com 满分网 查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.