满分5 > 高中数学试题 >

在四棱锥P-ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,...

在四棱锥P-ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,E为PD的中点,PA=2AB=2.
(1)求四棱锥P-ABCD的体积V;
(2)若F为PC的中点,求证PC⊥平面AEF;
(3)求证CE∥平面PAB.

manfen5.com 满分网
(1)利用直角三角形中的边角关系求出BC、AC、CD,由  求得底面的面积, 代入体积公式进行运算. (2)证明AF⊥PC,再由CD⊥平面PAC 证明CD⊥PC,由EF∥CD,可得PC⊥EF,从而得到PC⊥平面AEF. (3)延长DC,AB,设它们交于点N,证明EC是三角形DPN的中位线,可得EC∥PN,从而证明EC∥平面PAB. 【解析】 (1)在Rt△ABC中,AB=1,∠BAC=60°,∴,AC=2. 在Rt△ACD中,AC=2,∠ACD=60°,∴. ∴=. 则. (2)证明:∵PA=CA,F为PC的中点,∴AF⊥PC. ∵PA⊥平面ABCD,∴PA⊥CD,∵AC⊥CD,PA∩AC=A,∴CD⊥平面PAC,∴CD⊥PC. ∵E为PD中点,F为PC中点,∴EF∥CD,则EF⊥PC,∵AF∩EF=F,∴PC⊥平面AEF. (3)证明:延长DC,AB,设它们交于点N,连PN.∵∠NAC=∠DAC=60°,AC⊥CD, ∴C为ND的中点.∵E为PD中点,∴EC∥PN.∵EC⊄平面PAB,PN⊂平面PAB, ∴EC∥平面PAB.
复制答案
考点分析:
相关试题推荐
已知向量manfen5.com 满分网=(a,cos2x),manfen5.com 满分网=(1+sin2x,manfen5.com 满分网),x∈R,记f(x)=manfen5.com 满分网manfen5.com 满分网.若y=f(x)的图象经过点(manfen5.com 满分网,2 ).
(1)求实数a的值;
(2)设x∈[-manfen5.com 满分网manfen5.com 满分网],求f(x)的最大值和最小值;
(3)将y=f(x)的图象向右平移manfen5.com 满分网,再将得到的图象上各点的横坐标伸长到原来的4倍,纵坐标不变,得到y=g(x)的图象,求y=g(x)的单调递减区间.
查看答案
将所有3的幂,或者是若干个不相等的3的幂之和,由小到大依次排列成数列1,3,4,9,10,12,13,…,则此数列的第100项为    查看答案
在正六边形ABCDEF中,AB=1,manfen5.com 满分网,则x+y的取值范围是   
manfen5.com 满分网 查看答案
在平面直角坐标系xOy中,设直线l:kx-y+1=0与圆C:x2+y2=4相交于A、B两点,以OA、OB为邻边作平行四边形OAMB,若点M在圆C上,则实数k=    查看答案
已知D是由不等式组manfen5.com 满分网所确定的平面区域,则圆x2+y2=4 围成的区域与区域D的公共部分的面积为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.