满分5 > 高中数学试题 >

在△ABC中,角A,B,C的对边分别是a,b,c,且A,B,C成等差数列. (1...

在△ABC中,角A,B,C的对边分别是a,b,c,且A,B,C成等差数列.
(1)若manfen5.com 满分网manfen5.com 满分网=-manfen5.com 满分网,b=manfen5.com 满分网,求a+c的值;
(2)求2sinA-sinC的取值范围.
(1)通过A,B,C成等差数列,求得B的值,通过已知的向量积求得ac的值,代入余弦定理即可求出a+c. (2)通过两角和公式对2sinA-sinC,再根据C的范围和余弦函数的单调性求出2sinA-sinC的取值范围. 【解析】 (1)∵A,B,C成等差数列, ∴B=. ∵•=-, ∴accos(π-B)=-, ∴ac=,即ac=3. ∵b=,b2=a2+c2-2accosB, ∴a2+c2-ac=3,即(a+c)2-3ac=3. ∴(a+c)2=12,所以a+c=2. (2)2sinA-sinC=2sin(-C)-sinC=2(cosC+sinC)-sinC=cosC. ∵0<C<, ∴cosC∈(-,). ∴2sinA-sinC的取值范围是(-,).
复制答案
考点分析:
相关试题推荐
我们知道,如果定义在某区间上的函数f(x)满足对该区间上的任意两个数x1、x2,总有不等式manfen5.com 满分网成立,则称函数f(x)为该区间上的向上凸函数(简称上凸).类比上述定义,对于数列{an},如果对任意正整数n,总有不等式:manfen5.com 满分网成立,则称数列{an}为向上凸数列(简称上凸数列).现有数列{an}满足如下两个条件:
(1)数列{an}为上凸数列,且a1=1,a10=28;
(2)对正整数n(1≤n<10,n∈N*),都有|an-bn|≤20,其中bn=n2-6n+10.
则数列{an}中的第五项a5的取值范围为    查看答案
某射击队要从四名运动员中选拔一名运动员参加比赛,选拔赛中每名队员的平均成绩与方差S2如下表所示,如果要选择一个成绩高且发挥稳定的人参赛,则这个人应是(    ).
manfen5.com 满分网 查看答案
给定两个长度为1的平面向量manfen5.com 满分网manfen5.com 满分网,它们的夹角为120°.如图所示,点C在以O为圆心,以1半径的圆弧AB上变动.若manfen5.com 满分网=xmanfen5.com 满分网+ymanfen5.com 满分网,其中x,y∈R,则x+y的最大值是   
manfen5.com 满分网 查看答案
已知f(x)=x3-3x,过A(1,m)可作曲线y=f(x)的三条切线,则m的取值范围是    查看答案
已知函数f(x)是定义在(0,+∞)上的单调增函数,当n∈N*时,f(n)∈N*,若f[f(n)]=3n,则f(5)的值等于    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.