已知圆M的参数方程为x
2+y
2-4Rxcosα-4Rysinα+3R
2=0(R>0).
(1)求该圆的圆心的坐标以及圆M的半径.
(2)若题中条件R为定值,则当α变化时,圆M都相切于一个定圆,试写出此圆的极坐标方程.
考点分析:
相关试题推荐
学校餐厅每天供应1000名学生用餐,每星期一有A、B两样菜可供选择,调查资料表明,凡是在本周星期一选A菜的,下周星期一会有20%改选B,而选B菜的,下周星期一则有30%改选A,若用AA
n、B
n分别表示在第n个星期一选A、B菜的人数.
(1)若
,请你写出二阶矩阵M;
(2)求二阶矩阵M的逆矩阵.
查看答案
过平行四边形ABCD的顶点B、C、D的圆与直线AD相切,与直线AB相交于点E,已知AD=4,CE=5.
(1)如图1,若点E在线段AB上,求AE的长;
(2)点E能否在线段AB的延长线上?(即图2的情形是否存在?)若能,求出AE的长;若不能,请说明理由.
查看答案
设函数f(x)的定义域为D,值域为B,如果存在函数x=g(t),使得函数y=f(g(t))的值域仍然是B,那么,称函数x=g(t)是函数f(x)的一个等值域变换.
(1)判断下列x=g(t)是不是f(x)的一个等值域变换?说明你的理由:(A)f(x)=2x+b,x∈R,x=t
2-2t+3,t∈R;(B)f(x)=x
2-x+1,x∈R,x=g(t)=2
t,t∈R;
(2)设f(x)=log
2x(x∈R
+),g(t)=at
2+2t+1,若x=g(t)是f(x)的一个等值域变换,求实数a的取值范围,并指出x=g(t)的一个定义域;
(3)设函数f(x)的定义域为D,值域为B,函数g(t)的定义域为D
1,值域为B
1,写出x=g(t)是f(x)的一个等值域变换的充分非必要条件(不必证明),并举例说明条件的不必要性.
查看答案
已知定义在R上的函数f(x)和数列{a
n}满足下列条件:a
1=a,a
2≠a
1,当n∈N
*且n≥2时,a
n=f(a
n-1)且f(a
n)-f(a
n-1)=k(a
n-a
n-1).
其中a、k均为非零常数.
(1)若数列{a
n}是等差数列,求k的值;
(2)令b
n=a
n+1-a
n(n∈N
*),若b
1=1,求数列{b
n}的通项公式;
(3)试研究数列{a
n}为等比数列的条件,并证明你的结论.
查看答案
2010年上海世博会组委会为保证游客参观的顺利进行,对每天在各时间段进入园区和离开园区的人数作了一个模拟预测.为了方便起见,以10分钟为一个计算单位,上午9点10分作为第一个计算人数的时间,即n=1;9点20分作为第二个计算人数的时间,即n=2;依此类推…,把一天内从上午9点到晚上24点分成了90个计算单位.
对第n个时刻进入园区的人数f(n)和时间n(n∈N
*)满足以下关系(如图1):f(n)=
,n∈N
*对第n个时刻离开园区的人数g(n)和时间n(n∈N
*)满足以下关系(如图2):g(n)=
,n∈N
*(1)试计算在当天下午3点整(即15点整)时,世博园区内共有多少游客?
(2)请求出当天世博园区内游客总人数最多的时刻.
查看答案