满分5 > 高中数学试题 >

如图是一块长方形区域ABCD,AD=2(km),AB=1(km).在边AD的中点...

如图是一块长方形区域ABCD,AD=2(km),AB=1(km).在边AD的中点O处,有一个可转动的探照灯,其照射角∠EOF始终为manfen5.com 满分网,设∠AOE=α(0≤α≤manfen5.com 满分网),探照灯O照射在长方形ABCD内部区域的面积为S.
(1)当0≤α<manfen5.com 满分网时,写出S关于α的函数表达式;
(2)当0≤α≤manfen5.com 满分网时,求S的最大值.
(3)若探照灯每9分钟旋转“一个来回”(OE自OA转到OC,再回到OA,称“一个来回”,忽略OE在OA及OC反向旋转时所用时间),且转动的角速度大小一定,设AB边上有一点G,且∠AOG=manfen5.com 满分网,求点G在“一个来回”中,被照到的时间.

manfen5.com 满分网
(1)过O作OH⊥BC,H为垂足,讨论α的范围,当0≤α≤时,E在边AB上,F在线段BH上,根据S=S正方形OABH-S△OAE-S△OHF,当<α<时,E在线段BH上,F在线段CH上,S=S△OEF. (2)当0≤α≤时,利用基本不等式求出S的最大值,注意等号成立的条件; (3)在“一个来回”中,求出OE共转动的角度,其中点G被照到时,共转的角度,从而可求出“一个来回”中,点G被照到的时间. 【解析】 (1)过O作OH⊥BC,H为垂足. ①当0≤α≤时, E在边AB上,F在线段BH上(如图①), 此时,AE=tanα,FH=,…(2分) ∴S=S正方形OABH-S△OAE-S△OHF =.   …(4分) ②当<α<时, E在线段BH上,F在线段CH上(如图②), 此时,EH=,FH=,…(6分) ∴EF=. ∴S=S△OEF=. 综上所述,…(8分) (2)当0≤α≤时,S=, 即S=.             …(10分) ∵0≤α≤,∴0≤tanα≤1.即1≤1+tanα≤2. ∴≥2. ∴S≤2-. 当tanα=-1时,S取得最大值为2-.    …(12分) (3)在“一个来回”中,OE共转了2×=. 其中点G被照到时,共转了2×=.  …(14分) 则“一个来回”中,点G被照到的时间为(分钟).…(16分)
复制答案
考点分析:
相关试题推荐
在等腰△ABC中,已知AB=AC,B(-1,0),D(2,0)为AC的中点.
(1)求点C的轨迹方程;
(2)已知直线l:x+y-4=0,求边BC在直线l上的投影EF长的最大值.

manfen5.com 满分网 查看答案
已知数列{an}的前n项和为Sn,a1=1,且2an+1=Sn+2(n∈N*).
(1)求a2,a3的值,并求数列{an}的通项公式;
(2)解不等式manfen5.com 满分网(n∈N*).
查看答案
如图,在四棱锥P-ABCD中,PA=PB.底面ABCD是菱形,且∠ABC=60°,点M是AB的中点,点E在棱QD上,满足DE=2PE.求证:
(1)平面PAB⊥平面PMC;
(2)直线PB∥平面EMC.

manfen5.com 满分网 查看答案
manfen5.com 满分网如图,在四边形ABCD中,CA=CD=manfen5.com 满分网AB=1,manfen5.com 满分网=1,sin∠BCD=manfen5.com 满分网
(1)求BC的长;
(2)求四边形ABCD的面积;
(3)求sinD的值.
查看答案
已知函数f(x)是定义在(0,+∞)上的单调增函数,当n∈N*时,f(n)∈N*,若f[f(n)]=3n,则f(5)的值等于    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.