由已知可分析出函数g(x)是偶函数,则其零点必然关于原点对称,故g(x)在[-6,6]上所有的零点的和为0,则函数g(x)在[-6,+∞)上所有的零点的和,即函数g(x)在(6,+∞)上所有的零点之和,求出(6,+∞)上所有零点,可得答案.
【解析】
∵函数f(x)是定义在R上的奇函数,∴f(-x)=-f(x).
又∵函数g(x)=xf(x)-1,
∴g(-x)=(-x)f(-x)-1=(-x)[-f(x)]-1=xf(x)-1=g(x),
∴函数g(x)是偶函数,
∴函数g(x)的零点都是以相反数的形式成对出现的.
∴函数g(x)在[-6,6]上所有的零点的和为0,
∴函数g(x)在[-6,+∞)上所有的零点的和,即函数g(x)在(6,+∞)上所有的零点之和.
由0<x≤2时,f(x)=2|x-1|-1,
即
∴函数f(x)在(0,2]上的值域为[,1],当且仅当x=2时,f(x)=1
又∵当x>2时,f(x)=
∴函数f(x)在(2,4]上的值域为[,],
函数f(x)在(4,6]上的值域为[,],
函数f(x)在(6,8]上的值域为[,],当且仅当x=8时,f(x)=,
函数f(x)在(8,10]上的值域为[,],当且仅当x=10时,f(x)=,
故f(x)<在(8,10]上恒成立,g(x)=xf(x)-1在(8,10]上无零点
同理g(x)=xf(x)-1在(10,12]上无零点
依此类推,函数g(x)在(8,+∞)无零点
综上函数g(x)=xf(x)-1在[-6,+∞)上的所有零点之和为8
故选B