满分5 > 高中数学试题 >

在△ABC中,a,b,c分别为内角A,B,C的对边,且b2+c2-a2=bc. ...

在△ABC中,a,b,c分别为内角A,B,C的对边,且b2+c2-a2=bc.
(Ⅰ)求角A的大小;
(Ⅱ)设函数f(x)=manfen5.com 满分网,当f(B)取最大值manfen5.com 满分网时,判断△ABC的形状.
(Ⅰ)在△ABC中,由余弦定理求得cosA=,根据 A的范围,求求出 A的大小. (Ⅱ)利用二倍角公式化简函数f(x)的解析式为sin(x+),再利用角B+的范围,确定当f(B)取最大值时角A和角 C 的大小,从而判断三角形的形状. 【解析】 (Ⅰ)在△ABC中,因为b2+c2-a2=bc,由余弦定理a2=b2+c2-2bccosA可得cosA=. ∵0<A<π,∴A=. (Ⅱ)函数f(x)==sinx+cosx+=sin(x+), ∵A=,∴B∈( 0,),∴<B+<. ∴当B+=,即 B= 时,f( B)有最大值是. 又∵A=,∴C=,∴△ABC为等边三角形.
复制答案
考点分析:
相关试题推荐
已知△ABC的三个内角A,B,C所对的边分别为a,b,c.manfen5.com 满分网manfen5.com 满分网,且manfen5.com 满分网
(Ⅰ)求A的大小;
(Ⅱ)若a=1,manfen5.com 满分网.求S△ABC
查看答案
在整数集Z中,被5除所得余数为k的所有整数组成一个“类”,记为[k],即[k]={5n+k|n∈Z},k=0,1,2,3,4.给出如下四个结论:
①2011∈[1];   
②-3∈[3];   
③Z=[0]∪[1]∪[2]∪[3]∪[4];
④“整数a,b属于同一‘类’”的充要条件是“a-b∈[0]”.
其中,正确结论的是    查看答案
(理)设S是整数集Z的非空子集,如果∀a,b∈S有ab∈S,则称S关于数的乘法是封闭的.若T,V是Z的两个不相交的非空子集,TUV=Z且∀a,b,c∈T有abc∈T,∀x,y,z∈V有xyz∈V,有结论
①T,V中至少有一个关于乘法是封闭的;
②T,V中至多有一个关于乘法是封闭的;
③T,V中有且只有一个关于乘法是封闭的;  
④T,V中每一个关于乘法都是封闭的.
其中结论恒成立的是    查看答案
某校对高一男女学生共1000名进行健康调查,选用分层抽样法抽取一个容量为200的样本.已知女生比男生少抽了10人,则该校的女生人数应是    人. 查看答案
以点A(0,5)为圆心、双曲线manfen5.com 满分网的渐近线为切线的圆的标准方程是     查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.