满分5 > 高中数学试题 >

已知函数,g(x)=lnx. (Ⅰ)如果函数y=f(x)在[1,+∞)上是单调增...

已知函数manfen5.com 满分网,g(x)=lnx.
(Ⅰ)如果函数y=f(x)在[1,+∞)上是单调增函数,求a的取值范围;
(Ⅱ)是否存在实数a>0,使得方程manfen5.com 满分网在区间manfen5.com 满分网内有且只有两个不相等的实数根?若存在,请求出a的取值范围;若不存在,请说明理由.
(1)由于函数的解析式中含有参数a,故我们要对a进行分类讨论,注意到a出现在二次项系数的位置,故可以分a>0,a=0,a<0三种情况,最后将三种情况得到的结论综合即可得到答案. (2)方程整理为ax2+(1-2a)x-lnx=0构造函数H(x)=ax2+(1-2a)x-lnx(x>0),则原方程在区间内有且只有两个不相等的实数根即为函数H(x)在区间()内有且只有两个零点,根据函数零点存在定理,结合函数的单调性,构造不等式组,解不等式组即可得到结论. 【解析】 (Ⅰ)当a=0时,f(x)=2x在[1,+∞)上是单调增函数,符合题意. 当a>0时,y=f(x)的对称轴方程为, 由于y=f(x)在[1,+∞)上是单调增函数, 所以,解得a≤-2或a>0,所以a>0. 当a<0时,不符合题意. 综上,a的取值范围是a≥0. (Ⅱ)把方程整理为 , 即为方程ax2+(1-2a)x-lnx=0. 设H(x)=ax2+(1-2a)x-lnx(x>0), 原方程在区间()内有且只有两个不相等的实数根, 即为函数H(x)在区间()内有且只有两个零点 = 令H′(x)=0,因为a>0,解得x=1或(舍) 当x∈(0,1)时,H′(x)<0,H(x)是减函数; 当x∈(1,+∞)时,H′(x)>0,H(x)是增函数. H(x)在()内有且只有两个不相等的零点, 只需 即 ∴ 解得, 所以a的取值范围是().
复制答案
考点分析:
相关试题推荐
设函数f(x)是定义域在(0,+∞)上的单调函数,对于任意正数x,y都有f(x,y)=f(x)+f(y),且f(2)=1.
(1)求manfen5.com 满分网的值;
(2)一个各项均为正数的数列{an}满足:f(Sn)=f(an)+f(an+1)-1(n∈N*),其中是Sn是数列{an}的前n项和,求数列{an}的通项公式.
查看答案
已知函数manfen5.com 满分网,x∈R,将函数f(x)向左平移manfen5.com 满分网个单位后得函数g(x),设△ABC三个角A、B、C的对边分别为a、b、c.
(Ⅰ)若manfen5.com 满分网,f(C)=0,sinB=3sinA,求a、b的值;
(Ⅱ)若g(B)=0且manfen5.com 满分网manfen5.com 满分网,求manfen5.com 满分网的取值范围.
查看答案
已知向量manfen5.com 满分网=(manfen5.com 满分网cosx,0),manfen5.com 满分网=(0,sinx).记函数f(x)=(manfen5.com 满分网+manfen5.com 满分网2manfen5.com 满分网sin2x.
(I)求函数f(x)的最小值及取最小值时x的集合;
(II)求函数f (x)的单调递增区间.
查看答案
已知函数manfen5.com 满分网(x∈R),
(Ⅰ)求函数f(x)的最小值;
(Ⅱ)已知m∈R,命题p:关于x的不等式f(x)≥m2+2m-2对任意x∈R恒成立;命题q:函数y=(m2-1)x是增函数.若“p或q”为真,“p且q”为假,求实数m的取值范围.
查看答案
已知集合A={x|x2-4x-5≤0},B={x|x2-2x-m<0}.
(1)当m=3时,求A∩∁RB;
(2)若A∩B={x|-1≤x<4},求实数m的值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.