满分5 > 高中数学试题 >

命题“∃x∈R,使得2x≤0”的否定是( ) A.∃x∈R,使得2x>0” B....

命题“∃x∈R,使得2x≤0”的否定是( )
A.∃x∈R,使得2x>0”
B.∃x∈R,使得2x≥0”
C.∀x∈R,有2x>0
D.∀x∈R,有2x≥0
直接利用特称命题的否定是全称命题,写出全称命题即可. 【解析】 因为特称命题的否定是全称命题, 所以“∃x∈R,使得2x≤0”的否定是“∀x∈R,有2x>0”. 故选C.
复制答案
考点分析:
相关试题推荐
下列各式中,值为manfen5.com 满分网的是( )
A.2sin15°cos15°
B.cos215°-sin215°
C.2sin215°-1
D.sin215°+cos215°
查看答案
设集合A={4,5,7,9},B={3,4,7,8,9},全集U=A∪B,则集合∁U(A∩B)中的元素共有( )
A.3个
B.4个
C.5个
D.6个
查看答案
已知函数manfen5.com 满分网,g(x)=lnx.
(Ⅰ)如果函数y=f(x)在[1,+∞)上是单调增函数,求a的取值范围;
(Ⅱ)是否存在实数a>0,使得方程manfen5.com 满分网在区间manfen5.com 满分网内有且只有两个不相等的实数根?若存在,请求出a的取值范围;若不存在,请说明理由.
查看答案
设函数f(x)是定义域在(0,+∞)上的单调函数,对于任意正数x,y都有f(x,y)=f(x)+f(y),且f(2)=1.
(1)求manfen5.com 满分网的值;
(2)一个各项均为正数的数列{an}满足:f(Sn)=f(an)+f(an+1)-1(n∈N*),其中是Sn是数列{an}的前n项和,求数列{an}的通项公式.
查看答案
已知函数manfen5.com 满分网,x∈R,将函数f(x)向左平移manfen5.com 满分网个单位后得函数g(x),设△ABC三个角A、B、C的对边分别为a、b、c.
(Ⅰ)若manfen5.com 满分网,f(C)=0,sinB=3sinA,求a、b的值;
(Ⅱ)若g(B)=0且manfen5.com 满分网manfen5.com 满分网,求manfen5.com 满分网的取值范围.
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.