满分5 > 高中数学试题 >

下列命题中错误的是( ) A.如果平面α⊥平面β,那么平面α内一定存在直线平行于...

下列命题中错误的是( )
A.如果平面α⊥平面β,那么平面α内一定存在直线平行于平面β
B.如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面β
C.如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l,那么l⊥平面γ
D.如果平面α⊥平面β,那么平面α内所有直线都垂直于平面β
本题考查的是平面与平面垂直的性质问题.在解答时:A注意线面平行的定义再结合实物即可获得解答;B反证法即可获得解答;C利用面面垂直的性质通过在一个面内作交线的垂线,然后用线面垂直的判定定理即可获得解答;D结合实物举反例即可. 【解析】 由题意可知: A、结合实物:教室的门面与地面垂直,门面的上棱对应的直线就与地面平行,故此命题成立; B、假若平面α内存在直线垂直于平面β,根据面面垂直的判定定理可知两平面垂直.故此命题成立; C、结合面面垂直的性质可以分别在α、β内作异于l的直线垂直于交线,再由线面垂直的性质定理可知所作的垂线平行,进而得到线面平行再由线面平行的性质可知所作的直线与l平行,又∵两条平行线中的一条垂直于平面那么另一条也垂直于平面,故命题成立; D、举反例:教室内侧墙面与地面垂直,而侧墙面内有很多直线是不垂直与地面的.故此命题错误. 故选D.
复制答案
考点分析:
相关试题推荐
高为manfen5.com 满分网的四棱锥S-ABCD的底面是边长为1的正方形,点S,A,B,C,D均在半径为1的同一球面上,则底面ABCD的中心与顶点S之间的距离为( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.1
D.manfen5.com 满分网
查看答案
已知函数f (x)=eg(x),g (x)=manfen5.com 满分网(e是自然对数的底),
(1)若函数g (x)是(1,+∞)上的增函数,求k的取值范围;
(2)若对任意的x>0,都有f (x)<x+1,求满足条件的最大整数k的值;
(3)证明:ln(1+1×2)+ln(1+2×3)+…+ln[1+n (n+1)]>2n-3 (n∈N*).
查看答案
已知椭圆C:manfen5.com 满分网+manfen5.com 满分网=1(a>b>0)上的动点到焦点距离的最小值为manfen5.com 满分网.以原点为圆心、椭圆的短半轴长为半径的圆与直线x-y+manfen5.com 满分网=0相切.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若过点M(2,0)的直线与椭圆C相交于A,B两点,P为椭圆上一点,且满足manfen5.com 满分网+manfen5.com 满分网=tmanfen5.com 满分网(O为坐标原点).当|AB|=manfen5.com 满分网 时,求实数t的值.
查看答案
某公司为了实现1000万元利润的目标,准备制定一个激励销售人员的奖励方案:在销售利润达到10万元时,按销售利润进行奖励,且奖金y(单位:万元)随销售利润x(单位:万元)的增加而增加,但奖金总数不超过5万元,同时奖金不能超过利润的25%.现有三个奖励模型:manfen5.com 满分网,分析与推导哪个函数模型能符合该公司的要求?并给予证明.(注:1.002500≈2.7)
查看答案
已知函数manfen5.com 满分网,且manfen5.com 满分网.(e是自然对数的底数)
(1)求a与b的关系式;
(2)若f(x)在其定义域内为单调函数,求a的取值范围.
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.